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Abstract
In this dissertation, we investigate some functionals of a Wishart matrix and a normal
vector and discuss the application to linear discriminant analysis in a Bayesian framework.

In section 2, we consider the distribution of the product of a Wishart matrix and a
normal vector which are independently distributed. We derive the stochastic representation
of the product which is used to derive the density function and higher order moments of
the product. Based on the higher order moments of the product, we further present an
Edgeworth type expansion for the product. In addition, it turns out that the obtained
stochastic representation, density function and moments of the product remain valid for
the product of a singular Wishart matrix and a normal vector.

In section 3, we consider the distribution of the product of a Wishart matrix and
a conditional normal vector given a Wishart matrix. This type of the product plays
an important role in Bayesian analysis of the optimal portfolio. We derive the novel
stochastic representation for the product and observe from the stochastic representation
that the distribution of the product is closed under conditioning, marginalization, and affine
transformations. Moreover, the formulae for the first four moments, density function and
an Edgeworth type expansion are explicitly presented.

In section 4, we consider discriminant analysis in the case of two multivariate nor-
mal populations with different means and common covariance matrices. We derive the
posterior predictive density function and the first four moments of the population linear
discriminant function under some prior distributions. Based on the derived posterior pre-
dictive density function, we consider the Bayesian estimation for the misclassification rate
associated with a population linear discriminant function, referred to as the optimal error
rate. We obtain an explicit expression of the Bayes estimator of the optimal error rate.
Although the Bayes estimator of the optimal error rate is expressed by the infinite sums and
special functions in general, it is simply expressed under some conditions. In addition, an
Edgeworth type expansion for the Bayes estimator is suggested based on the approximate
posterior predictive distribution of the population linear discriminant function.
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1 Preface
The multivariate normal distribution lies at the heart of multivariate statistical analysis.
Statisticians often discuss the multivariate statistical method under the assumption of
multivariate normality. Central limit theorem—sum of the identically and independently
distributed random variables is asymptotically multivariate normal distribution — is one of
the reasons for assuming the multivariate normality for the population. Most of the books
on the multivariate statistical analysis, for example, Anderson (2003), Muirhead (1982)
and Siotani et al. (1985) discuss the distributional properties of the multivariate normal
distribution in detail. Gupta and Nagar (2000) discusses the properties of the matrix
variate normal distribution, which is an extension of the multivariate normal distribution.
In particular, they present a number of results about the moments of the matrix variate
normal distribution.

Another important topic on the multivariate normal distribution is Stein’s identity. This
identity gives a recurrence formula for functions of a random vector which is according
to the multivariate normal distribution. Stein’s identity is not only used for calculating
the moments of the multivariate normal distribution, but also for shrinkage estimation for
mean vector (Stein, 1981).

The Wishart distribution also plays an important role in multivariate statistical analysis,
as well as the multivariate normal distribution. There are many studies on the Wishart
matrix and related quantities. Theorem 3.2.10 of Muirhead (1982), for example, provided
the fundamental properties of the partitioned Wishart matrix. Bodnar and Okhrin (2008)
established an analog to Theorem 3.2.10 of Muirhead (1982) for the singular, inverse
and generalized inverse partitioned Wishart matrices. A number of papers deal with the
moments of a Wishart matrix. Readers may refer to Watamori (1990), von Rosen (1991a),
Sultan and Tracy (1996), Letac and Massam (2004), Drton et al. (2008), and Hillier and
Kan (2021).

Haff’s identity— a recurrence formula for functions of a Wishart matrix— is also
an important as well as the Stein’s identity. This identity is not only used to derive
some moments of a Wishart matrix but also to be applied to improved estimation of the
covariance matrix and its precision for the multivariate normal distribution (e.g. Haff ;
1977, 1979a, 1979b, 1979c, 1980).

It was pointed out by Bodnar and his co-authors (2011, 2013, 2015, 2019) that the
distribution of the product of a Wishart matrix and a normal vector is often important in
multivariate statistical analysis and portfolio theory, but has not been studied very much. To
motivate the research on the product, we will begin with the brief description of portfolio
theory and discriminant analysis, and then summarize the previous researches on the
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product. The mean-variance portfolio theory of Markowitz (1952) has been a fundamental
approach to asset allocation. The optimal portfolios are obtained by maximizing the
expected return subject to given level of the risk or by minimizing by the variance of the
portfolio return. Let xt denote a random vector of returns on k assets taken at time point t,
and assume that x1,x2, ... are independently and identically distributed as a multivariate
normal distribution with the mean vector µ and covariance matrix Σ, where Σ is positive
definite. This assumption is denoted by xt ∼ Nk(µ,Σ). Denoting the vector of portfolio
weights by w, this optimization problem is expressed as

min σ2
p = min w′Σw s.t. w′µ = µp and w′1 = 1,

where 1 is a vector of ones, and µp is a given level of expected return of the portfolio.
The set of optimal portfolios obtained for all µp is called as the efficient frontier, which

is an upper part of a parabola in the mean–variance space (cf. Merton, 1972). According
to Bodnar and Schmid (2009), the efficient frontier has the following three parameters:

RGMV =
l′Σ−1µ

1′Σ−11
, (1)

VGMV =
1

1′Σ−11
, (2)

s = µ′Σ−1µ− (1′Σ−1µ)2

1′Σ−11
, (3)

which are referred to as the expected return of the global minimum variance portfolio
(henceforth, GMV portfolio), variance of GMV portfolio and the slope parameter of the
parabola, respectively. In addition, the efficient frontier satisfy the following equation:

(R−RGMV )
2 = s(V − VGMV ).

If short-selling is allowed and a risk-free asset with return rf is available, there are two
portfolio weights which are derived from the efficient frontier: one is the tangency portfolio
weights, the other is the GMV portfolio weights. This is seen in Figure 1. We observe from
Figure 1 that the tangency portfolio weights corresponds to the tangency point between the
efficient frontier and a capital market line drawn from the point (R, V ) = (rf , 0), where
rf stands for the rate of risk-free asset. Moreover, the GMV portfolio is the point which
possesses the smallest variance among all portfolios on the efficient frontier.

The explicit form of the tangency and GMV portfolio weights is given by

wTP = α−1Σ−1(µ− rf1), (4)

wGMV =
1′Σ−1

1′Σ−11
, (5)

where α denotes the risk aversion of the investor.
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Figure 1: Illustration of the efficient frontier, capital market line, global minimum variance
portfolio (GMV portfolio) and the tangency portfolio in the mean–variance space. rf

denotes the rate of risk-free asset.

If a risk-free asset is unavailable, we can use the portfolio weights which maximize the
Sharp ratio defined by SR = µp/σp. This portfolio weights are referred to as the Sharpe
ratio optimal portfolio weights:

wSR =
Σ−1µ

1′Σ−1µ
. (6)

Secondly, we outline the theory of discriminant analysis for two multivariate normal
populations. Let πi : Np(µi,Σi) be the multivariate normal populations with mean µi

and the covariance matrix Σi for i = 1, 2. Then the density function of the population πi
is

pi(x) = pi(x|µi,Σ) =
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(x− µi)

′Σ−1
i (x− µi)

}
. (7)

The log likelihood of p1(x) and p2(x) is given by

U0 = log
p1(x)

p2(x)
=

1

2
x′(Σ−1

2 −Σ−1
1 )x+ x′(Σ−1

1 µ1 −Σ−1
2 µ2)

+
1

2
(µ′

2Σ
−1
2 µ2 − µ′

1Σ
−1
1 µ1) +

1

2
log

|Σ2|
|Σ1|

. (8)
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Suppose we have a priori probabilities qi for i = 1, 2 of drawing an observation from
πi and let C(j|i) be the cost due to mis-discrimination where C(i|i) = 0. Then we
obtain from Theorem 9.2.1 of Siotani et al. (1985) that the Bayes rule for given (q1, q2)

is classifying a new observation into π1 if U0 ≥ c, whereas into π2 otherwise, where
c = log[q2C(1|2)/q1C(2|1)]. When Σ1 = Σ2 = Σ, U0 reduces to

U = (µ1 − µ2)
′Σ−1

{
x− 1

2
(µ1 + µ2)

}
, (9)

which is known as the population linear discriminant function.
In a frequentist perspective, the population covariance matrix Σ and mean vector µ are

often estimated by the sample covariance matrix and sample mean vector, respectively. The
distribution of the sample covariance matrix is a Wishart distribution and the distribution
of the sample mean vector is the multivariate normal distribution. If we consider the
product of the inverse of the sample covariance matrix and a sample mean vector, then
we should discuss the product of an inverse Wishart matrix and a normal vector. Later
on, we will look at the previous researches on the distribution of the product of an inverse
Wishart matrix and a normal vector. Bodnar and Okhrin (2011) derived the density
function and characteristic function of the product of an inverse Wishart matrix and a
normal vector, which are represented by multiple integrals and special functions. These
results are extension of Bodnar and Schmid (2006) where they dealt with the product of
an inverse χ2 and a normal variable. On the basis of the derived density function of the
product of an inverse Wishart matrix and a normal vector, they also provided the stochastic
representation of the linear combination of the product. In addition, Walds type test statistic
was devised to test the general linear hypothesis for Σ−1µ, and its distribution was given.
The suggested test can be directly applied to test the significance of the coefficients of the
linear discriminant function, and the tangency and Sharp ratio optimal portfolio weights
given by (9), (4) and (6), respectively. In the empirical analysis, they exemplify that
the classical approach to the estimation of the portfolio weights could be very poor, and
explain this phenomena in terms of the confidence region and test theory for the GMV
portfolio weights (5). As for the GMV portfolio weights, Bodnar and Schmid (2008)
showed that the distribution of the sample GMV portfolio weights are identical to the
multivariate t distribution under an elliptically contoured population. In addition, they
provided the statistical test for the general linear hypothesis of the GMV portfolio weights.
Bodnar et al. (2017) considered the Bayesian estimation of the GMV portfolio under the
multivariate normal population. They firstly derived the posterior distributions for µ and
Σ under the several prior distributions including non-informative and informative priors.
In Theorem 1 of their paper, they derived the posterior distributions of

θ =
LΣ−11

1′Σ−11
,
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where L and 1 are the constant matrix and vector of ones, respectively. Meanwhile, they
directly assumed prior distributions for θ, and constructed the Jeffreys’ prior distribution
for θ, which resulted in the multivariate t distribution. In Theorem 2, they evaluated the
posterior distribution for θ under the derived Jeffreys’ prior distribution.

Bodnar et al. (2019) discussed the distribution of the product of a Moore-Penrose
inverse of a (singular) Wishart matrix and a normal vector whose covariance matrix is not
full rank. This situation can be considered when the strong correlations of asset returns can
yield the near singularity of the population covariance, or the number of asset in a portfolio
is greater than the number of observations. They derived the stochastic representation of
the product and developed the statistical tests on the estimated tangency portfolio weights.
In addition, the asymptotic normality was established under the high-dimensional regime.
Kotsuiba and Mazur (2014) established the asymptotic normality of the product of an
inverse Wishart matrix and a normal vector and suggested an integral approximation for
the product, which is based on the third order Taylor expansion for the density function
of the product. Bodnar et al. (2019) derived the stochastic representation for the linear
combination of the product of an inverse Wishart matrix and a normal vector, and suggested
the use of a test statistic to investigate whether two population linear discriminant function
coefficients are equal as well as a coefficient in the linear discriminant function is larger
than another one. Moreover, they established the asymptotic normality of the product
based on the derived stochastic representation when the sample size and dimension goes
to infinity, while Bodnar et al. (2016) proved the asymptotic normality of the product
under the high-dimensional asymptotic regime when the population is a matrix variate
family of skewed distributions. Javed et al. (2021) derived the higher order moments of
the product of an inverse Wishart matrix and a normal vector, which involves a confluent
hypergeometric function in general. In particular, the first four moments of the product
were provided in closed-form. In an empirical illustration, they computed the first four
moments of the estimated portfolio weights for the weekly log returns of four financial
indices listed in NASDAQ stock exchange, and concluded that the distribution of estimated
portfolio weights are well approximated by a normal distribution.

In Bayesian context, we often deal with the distribution of the product of a Wishart
matrix and a normal vector, since the prior or posterior distribution for Σ−1 and µ is a
Wishart distribution and multivariate normal distribution, respectively.

Bodnar et al. (2013) derived the stochastic representation of the product of a Wishart
matrix and a normal vector, which are independently distributed. Although the simulated
value of the product is usually generated from k(k + 1)/2 + k random variables, the
derived representation enables us to obtain the simulated value from less than 2(k + 1)

random variables. This fact implies that the derived representation is very efficient for
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computational purposes. Based on the derived stochastic representation, they constructed
the density function of the product which involves the multi-dimensional integrals. They
also found an approximation for the density function of the product based on the Gaussian
integral and the third-order Taylor series expansion, and documented a good performance.
Bodnar et al. (2015) extended the results of Bodnar et al. (2013) by investing the distribu-
tional properties of the product of a singular Wishart matrix and a normal vector. Firstly,
they presented the distributional properties of a partitioned singular Wishart matrix and
characteristic function of the singular Wishart matrix. The former result is an extension of
the results of Srivastava (2003) and Bodnar and Okhrin (2008). On the basis of the derived
properties of the singular Wishart matrix, they proved that the stochastic representation of
the product of the singular Wishart matrix and a normal vector has the same form as the
representation of the product of the non-singular Wishar matrix and a normal vector. This
is stated as follows:

Claim 1.1 (Bodnar and his co-authors; 2013, 2015). Let A ∼ Wk(n,Σ) and z ∼
Nk(µ,λΣ), where Σ is positive definite. Assume that A and z are independent. Let
L be a p × k constant matrix with rank p < k and S1 = (LΣL′)−1/2LΣ1/2 and
S2 = (Ik − S′

1S1)1/2,

LAz
d
= ξ(LΣL′)1/2y1 +

√
ξ(LΣL′)1/2

[
√
y′
1y1 + ηIp −

√
y′
1y1 + η −√

η

y′
1y1

y1y
′
1

]
z0,

where η = y′
2y2, ξ ∼ χ2

n, z0 ∼ Np(0, Ip),

y =

(
y1

y2

)
∼ Nk

((
S1Σ1/2µ

S2Σ1/2µ

)
,λ

(
S1ΣS′

1 S1ΣS′
2

S2ΣS′
1 S2ΣS′

2

))
.

In addition, ξ and z0 are independent of y.

This result implies that all distributional properties on the product of a Wishart matrix
and a normal vector remain valid for the product of a singular Wishart matrix and a normal
vector.

Bodnar et al. (2019) dealt with the distribution of the product of a (singular) Wishart
matrix and a singular normal vector, which are independently distributed. Additionally,
they assumed that the rank of the covariance matrix of a (singular) Wishart matrix is not
full rank, and provided the results on the distribution of a linear symmetric transformation
of the Wishart matrix. On the basis of the derived distributional properties on the Wishart
matrix, they provided the stochastic representation of the product, and the characteristic
function of the product. Under the double asymptotic regime, i.e., when both the rank of
the covariance matrix and degrees of freedom of a Wishart matrix denoted by r and n,
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respectively, tend to infinity such that r/n → c ∈ [0,+∞), they established the asymptotic
normality of the linear combination of the product.

In section 2, we extend the result of Bodnar and his co-authors (2013, 2015) with
providing the stochastic representation of the product of a (singular) Wishart matrix and
a normal vector with uncommon covariance matrix. This setting is seen in Bayesian
statistics when we assume the semi-conjugate prior distribution for the parameters of
multivariate normal distribution (cf. Hoff, 2009). The derived density function is expressed
by multi-integrals of the complicated univariate density functions, which leads to the
difficulties in investing the characteristic of the distribution of the product. To understand
the characteristic of the distribution in detail, the first four moments are useful. In
particular, the skewness and kurtosis inform us of how the distribution deviates from a
normal distribution, so we study the higher order moments of the product. Finally, we
propose a Edgeworth expansion for the product, where we explicitly use the result of
moments.

Bauder and his co-authors (2018, 2020) considered the product of a Wishart matrix
and a conditional normal vector given a Wishart matrix. This situation corresponds to
the conjugate normal inverse Wishart prior or posterior distribution for Σ−1 and µ. They
derived the stochastic representation of the product by employing the method detailed in
Bodnar and his co-authors (2013, 2015, 2019). Moreover, the first two moments and the
asymptotic normality were established. In the simulation study, they applied the obtained
results to compute the coverage probabilities of credible intervals for the tangency portfolio
weights.

In section 3, we consider the product of a Wishart matrix and a conditional normal
vector given a Wishart matrix. We obtain the stochastic representation of the product
which is highly computationally efficient than the stochastic representation which is given
by Bauder and his co-authors (2018, 2020). Since the obtained stochastic representation
shows that the distribution of the product belongs to an existing family of distributions:
generalized hyperbolic distributions (cf. Blæsild and Jensen, 1981). This fact enables
us to access the explicit expression for the density function and the first four moments
of the product. In addition, it turns out that the distribution of the product is closed
under conditioning, marginalization, and affine transformation. Since the density function
of the product involves the special function in general, it is difficult to obtain the explicit
expression of the cumulative distribution function. To evaluate the cumulative distribution
function of the product, we provide a Edgeworth expansion for the product.

Although the distribution of the product of (inverse) Wishart matrix and a normal
vecotor is an important statistic, more complicated functional form including the product
appears in multivariate analysis and portfolio theory. In portfolio theory, some parameters
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in the efficient frontier are more complex functions in contrast to the product. Bodnar
and Schmid (2009) considered the several statistical tests for the expected return RGMV

and the slope parameter s, which is defined by (1) and (3), respectively. They proved that
a confidence region of the efficient frontier is bordered five parabolas. Other references
which have studied the parameters of the efficient frontier are Jobson and Korkie (1980),
Jobson (1991), Bodnar (2004), Kan and Smith (2008) and Bauder et al. (2019). In
particular, Bauder et al. (2019) discussed the distributional properties of the efficient
frontier from a Bayesian perspective. Under the diffuse and conjugate prior distributions,
they derived the stochastic representation of the posterior distributions for the parameters
of the efficient frontier, i.e. variance, expected return of the GMV portfolio and slope
parameter. Based on the derived stochastic representation, they derived the first two
moments and established the asymptotic normality of the parameters of the efficient
frontier. In the appendix of section 3, we discuss the results given in Bauder et al. (2019)
- in particular, the stochastic representations for the parameters of the efficient frontier.

In multivariate analysis, linear discriminant function is one of the important statistic
in multivariate statistical analysis and its distribution from frequentist perspective are
well-studied (cf. Okamoto, 1963; Siotani and Wang, 1977; Anderson, 1973). In this
dissertation, we discuss the distribution of linear discriminant function from Bayesian
perspective. There are some papers on the linear discriminant analysis in a Bayesian
setting. We take a brief discussion on the Bayesian discriminant analysis. The posterior
probability that the new observation y arises from either multivariate normal population
π1 : Np(µ1,Σ1) or π2 : Np(µ2,Σ2) follows from Bayes’ theorem that

Pr(y ∈ πi|y) =
qipi(y)

q1p1(y) + q2p1(y)
,

where qi is a prior probability of drawing an observation from πi and pi(y) is defined as (7).
If the population parameters and prior probabilities are known, then we can place the new
observations in the population where the posterior probability is maximized. However,
in most cases, they are unknown and need to be estimated. According to Rigby (1982),
the estimate of the posterior probability obtained by substituting the posterior predictive
distribution of y for pi(y) is called the "predictive" estimate. Geisser (1964, 1982)
calculated the posterior predictive distribution under various assumptions for cases where
the prior probability is known or unknown, and obtained "predictive" estimates. In
Rigby (1992), the "predictive" estimate and the classical estimate were compared, and
it was shown through simulation that the "predictive" estimate performed better for the
posterior probability Pr(y ∈ πi|y) than the classical estimate. Finally, the credible
interval for the posterior probability Pr(y ∈ πi|y) was approximated by using Pearson
curve systems. On the other hand, Rigby (1982) calculated the credible interval of
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Pr(y ∈ πi|y) from the posterior distribution of zi = pi(y). Their method is as follows:
they calculated the moments of L = log(z1/z2), approximated the distribution of L using
the Peason curve systems, and calculated the credible interval for Pr(y ∈ πi|y) using the
transformation given by

Pr(y ∈ πi|y) =
1

1 + (q2/q1) exp(−L)
.

Fatti (1982) also discussed the "predictive" estimation of the posterior probability Pr(y ∈
πi|y). They extended the discussion in Geisser (1964, 1966) and calculated the posterior
predictive distribution ofy under a random-effect model in which each of k normal popula-
tions is randomly selected. The random-effect model can be formulated as πi : Np(µi,Σ)

with µi ∼ Np(ξ,T) for i = 1, · · · , k. They employed both the usual diffuse prior and
Box-Tiao’s non-informative prior distributions (cf. Box and Tiao, 1973) as the prior dis-
tributions for the unknown Σ, ξ, and T. The resulting posterior predictive distributions
of y under these prior distributions are expressed by a hypergeometric function of matrix
argument.

Fatti (1983) discussed the linear discriminant analysis under the random-effects model.
They derived the density function of the population-based and sample-based Mahalanobis
distances between two different populations, as well as those between an observation and
a randomly selected population. These results were used for evaluating the probability
of the misclassification associated with population linear discriminant and sample linear
discriminant under the random-effects model. Since all of the estimates of the probability
of the misclassification include the eigenvalues of TΣ−1, they estimated these eigenvalues
by using empirical Bayes method.

Geisser (1967, 1982) considered the Baysian estimation of the two probabilities of
misclassification: one is the optimal error rate, the other is the actual error rate. The
optimal error rates are the probability of misclassification that occurs when we use the
population linear discriminant (9) with cut-off point x, and defined as

ε1 = ε1(µ1,µ2,Σ) = Pr[U < x|µ1,µ2,Σ,y ∈ π1] = Φ

(
x−∆2/2

∆

)
,

ε2 = ε2(µ1,µ2,Σ) = Pr[U > x|µ1,µ2,Σ
−1,y ∈ π2] = Φ

(
x+∆2/2

∆

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal distri-
bution, and ∆2 denotes the squared Mahalanobis distance between π1 and π2, which is
defined by ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2).

Suppose we collect two mutually independent random samples x11, · · · ,x1N1 and
x21, · · · ,x2N2 drawn fromπ1 andπ2, respectively. Our estimate ofµ1 is x̄1 =

∑N1

α=1 x1α/N1,

9



of µ2 is x̄2 =
∑N2

α=1 x2α/N2, and of Σ is S defined by nS =
∑N1

α=1(x1α − x̄1)(x1α −
x̄1)′ +

∑N2

α=1(x2α − x̄2)(x2α − x̄2)′ with n = N1 +N2 − 2.
The actual error rates are the probability of misclassification that occurs when we use

the sample linear discriminant

V = (x̄1 − x̄2)
′S−1

{
y − 1

2
(x̄1 + x̄2)

}
.

The actual error rates are defined as

β1 = β1(µ1,µ2,Σ) = Pr[V < x|µ1,µ2,Σ
−1,y ∈ π1]

= Φ

(
(x̄1 − x̄2)′S−1 [(x̄1 + x̄2)/2− µ1] + x√

(x̄1 − x̄2)′S−1ΣS−1(x̄1 − x̄2)

)
,

β2 = β2(µ1,µ2,Σ) = Pr[V > x|µ1,µ2,Σ
−1,y ∈ π2]

= Φ

(
(x̄1 − x̄2)′S−1 [(x̄1 + x̄2)/2− µ2] + x√

(x̄1 − x̄2)′S−1ΣS−1(x̄1 − x̄2)

)
,

It is noted that β1 and β2 are random variables that are functions of µ1, µ2 and Σ, whereas
x̄1, x̄2 and S are constants.

Let Q be the sample squared Mahalanobis distance defined by (x̄1− x̄2)′S−1(x̄1− x̄2).
Although the exact posterior distributions for β1 and β2 are found in Geisser (1967), the
following approximations are also available:

Pr[β1 ≤ b] ≈ Φ

(
Φ−1(b)− A1

(N−1
1 +B1)1/2

)
,

where

A1 =

(
[n− p+ 1]/2

Qn

)1/2

(x−Q/2), B1 = [x−Q/2]2/(2nQ),

and

Pr[β2 ≤ b] ≈ 1− Φ

(
Φ−1(1− b)− A2

(N−1
2 +B2)1/2

)
,

where

A2 =

(
[n− p+ 1]/2

Qn

)1/2

(x+Q/2), B2 = [x+Q/2]2/(2nQ).

The expected value of βi is described by the posterior predictive density of V ,
f(V |π1) = f(V |y ∈ π1, x̄1, x̄2,S), as follows:

E(β1) =

∫ x

−∞
f(V |π1)dV

10



= Pr[tn+1−p ≤ (x−Q/2)[n(N1 + 1)Q/(n+ 1− p)N1]
−1/2],

E(β2) =

∫ ∞

x

f(V |π2)dV

= Pr[tn+1−p > (x+Q/2)[n(N2 + 1)Q/(n+ 1− p)N2]
−1/2],

where ts is a t-distributed random variable with s degrees of freedom.
As for the posterior distribution of the optimal error rate εi, Geisser (1964) constructed a

(1−α)% confidence interval based on the posterior distribution of the squared Mahalanobis
distance. In addition, Geisser (1964, 1982) also gave the following approximation for the
posterior distribution of ε1:

Pr[ε1 ≤ b] ≈ 1−Gs

[
4c−1(p+ c−1Q)(Φ−1(b))2

p+ c−1Q+ n−1(cQ)2

]
,

where Gs(·) is the cumulative distribution function of χ2
s random variable with s =

(p+c−1Q)2/(p+c−1Q+n−1(cQ)2). In addition, they provided the normal approximation
based on the first two moments of the posterior predictive distribution of population linear
discriminant as follows:

E(ε1) ≈ Φ

(
x− (pc+Q)/2

[pc+ (1 + pc)Q]1/2

)
. (10)

In section 4, we propose an Edgeworth expansion for E(ε1) to improve the accuracy
of the approximation given by (10). We also obtain an exact representation for E(ε1) in
the form involving infinite series and special functions. It will be seen that under special
conditions this representation can be expressed only in terms of finite sums and elementary
functions. In Geisser (1964), the expression of the posterior predictive distribution for
the population linear discriminant was not given explicitly, and only moments up to
the second order were given. Therefore, in this paper, the expression of the posterior
predictive distribution for the population linear discriminant is given explicitly, and a
precise expression of the moments up to the fourth order is derived. These results are
useful for Bayesian estimation of the optimal error rate in the paper.
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2 Distribution of the product of a Wishart matrix and a
normal vector

2.1 Introduction
Functions of a Wishart matrix and a normal vector appear in a variety of multivariate
statistical methods, such as principal components analysis, multiple comparison, and
discriminant analysis under multivariate normality. Over the past ten years, there has been
an increase in the number of studies on the product of a Wishart matrix and a normal
vector. Bodnar and Okhrin (2011), for example, derived the density function of the
product of an inverse Wishart matrix and a normal vector, which is expressed by the four
dimensional integrals and the modified Bessel function of the first kind (cf. Abramowitz
and Stegun, 1965). In addition, they discussed potential applications to portfolio theory
and discriminant analysis. Meanwhile, Bodnar et al. (2013) presented the stochastic
representation and density function of the product of a Wishart matrix and a normal
vector. They also found an approximation for the density function based on the Gaussian
integral and the third-order Taylor series expansion. Bodnar et al. (2014) investigated the
distributional properties of the product of a singular Wishart matrix and a normal vector.
The distributional properties of (inverse) singular Wishart distribution are also well studied
by Díaz-García (1997), Srivastava (2003), Bodnar and Okhrin (2008), Bodnar and his co-
authors (2016, 2018), among others. Kotsuiba and Mazur (2015) extended the results in
Bodnar and Okhrin (2011) by proving the asymptotic and approximate density functions
of the product of an inverse Wishart matrix and a normal vector. Bodnar et al. (2018)
derived the stochastic representations of the product of a singular Wishart matrix and a
singular normal vector, in addition to proving the asymptotic normality of the product
under the high-dimensional asymptotic regime. Bodnar et al. (2019) derived the central
limit theorems for functionals of large sample covariance matrix and mean vector when
the population is a matrix-variate location mixture of a normal distribution. Javed et
al. (2021) derived the higher order moments of the product of an inverse Wishart matrix
and a normal vector.

The product of a Wishart matrix and a normal vector plays an important role in discrim-
inant analysis and in portfolio theory. The coefficients of the sample linear discriminant
function, for example, is the product of an inverse Wishart matrix and a normal vector,
whereas the optimal portfolio weights are expressed as the product of a Wishart matrix
and a normal vector from Bayesian perspective. Bodnar et al. (2020) derived the stochastic
representations for the coefficients, and developed the statistical test for the coefficients.
Bauder and his co-authors. (2018, 2020) provided the stochastic representations for the
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posterior distribution of the weights, and established asymptotic normality based on the
derived stochastic representations.

Previous studies on the product of a Wishart matrix and a normal vector have assumed
the covariance matrix of a normal vector is a multiple of that of a Wishart matrix.
However, assuming an uncommon covariance structure (in other words, assuming the
covariance matrix of a normal vector is different from that of a Wishart matrix), seems
more appropriate when we consider that one can choose the semi-conjugate priors for the
parameters of multivariate normal population, as discussed in Hoff (2009). In addition,
there has been little research on moments of the product. Thus, the purpose of this study
is to present the stochastic representation, density function and exact moments of the
product under the uncommon covariance structure. The rest of this paper is structured
as follows. Under the uncommon covariance structure, the stochastic representation and
density function of the product are naturally derived from the result of Bodnar et al. (2013).
In addition, we also derive the explicit moment formulae of the product in Section 2.2. The
results of numerical studies are given in Section 2.3, while Section 2.5 summarizes the
paper. The Appendix contains the result of the higher order expectations of the elements
of a Wishart matrix, which are used to prove the main results presented in Section 2.2.

2.2 Main Results
In this section we present the main findings. In particular, we derive the moments of the
product of a Wishart matrix and a normal vector, which are independent. Let A be a
k-dimensional Wishart matrix with n degrees of freedom and covariance matrix Σ. In
this paper, we permit the singularity of a Wishart matrix, i.e. A ∼ Wk(n,Σ), k > n. Let
z ∼ Nk(µ,Ω); i.e., it follows a k-dimensional multivariate normal distribution with the
mean vector µ and covariance matrix Ω. Throughout the paper, we assume Σ and Ω are
positive definite, which is denoted by Σ > 0 and Ω > 0.

2.2.1 Stochastic representation and density function

Stochastic representation is not only useful for Monte Carlo simulations but for the theory
of elliptically contoured distributions (cf. Gupta et al., 2013). In what follows, we present
the stochastic representation of LAz where L (p×k) is a constant matrix with rank p < k.
If we take L as l′ = (1, 0, · · · , 0), we can investigate the distribution of the first element
of the product, whereas vector of ones, we can investigate the distribution of the sum of
the elements. In addition, the derived stochastic representation can be applied to construct
the density function and to evaluate the general moment formulae of the product. The
symbol d

= denotes the equality in distribution. In Theorem 2.1, we present a stochastic
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representation for linear combinations of the elements of the random vector Az, which is
represented by independent random variables: χ2, and multivariate normal distributions.

Theorem 2.1. Let A ∼ Wk(n,Σ) and z ∼ Nk(µ,Ω), where Σ > 0 and Ω > 0.
Assume that A and z are independent. Let L be a p × k constant matrix with rank
p < k and S1 = (LΣL′)−1/2L̃Σ̃1/2 and S2 = (Ik − S′

1S1)1/2, where L̃ = LΩ−1/2 and
Σ̃ = Ω1/2ΣΩ1/2. Then the stochastic representation of LAz is given by

LAz
d
= ξ(LΣL′)1/2y1 +

√
ξ(LΣL′)1/2

[
√
y′
1y1 + ηIp −

√
y′
1y1 + η −√

η

y′
1y1

y1y
′
1

]
z0,

where η = y′
2y2, ξ ∼ χ2

n, z0 ∼ Np(0, Ip),

y =

(
y1

y2

)
∼ Nk

((
S1Σ̃1/2µ̃

S2Σ̃1/2µ̃

)
,

(
S1Σ̃S′

1 S1Σ̃S′
2

S2Σ̃S′
1 S2Σ̃S′

2

))
with µ̃ = Ω−1/2µ.

In addition, ξ and z0 are independent of y.

Proof. If we assume that A is a non-singular Wishart matrix, then the stochastic repre-
sentation of LAz can be written by

LAz
d
= L̃Ω1/2AΩ1/2z1,

where z1 ∼ Nk(µ̃, Ik). Using Theorem 3.2.5 of Muirhead (1982),

Ω1/2AΩ1/2 ∼ Wk(n, Σ̃).

If we decompose Σ̃ as Σ̃ = Σ̃1/4Σ̃1/2Σ̃1/4, then

LAz
d
= L̃Σ̃1/4A1Σ̃

1/4z1, (11)

where A1 ∼ Wk(n, Σ̃1/2). Since Σ̃1/4z1 ∼ Nk(Σ̃1/4µ̃, Σ̃1/2), the covariance matrix of
Σ̃1/4z1 is the same as that of A1. This implies that if we apply Theorem 1 of Bodnar et
al. (2013) to (11), the desired result follows immediately.

Since Theorem 4 of Bodnar et al. (2014) showed that the stochastic representation
of the product of a non-singular Wishart matrix and a normal vector which is given by
Theorem 1 of Bodnar et al. (2013) remains valid for the product of a singular Wishart
matrix and a normal vector. This fact implies that the stochastic representation presented in
Theorem 2.1 works for the product of a singular Wishart matrix and a normal vector.

Since the obtained stochastic representation allows us to simulate p + k + 2 random
variables to obtain the realizations of the product, this representation is efficient for
computational purposes, especially for larger values of k. Without this representation, we
would have to simulate k + k(k + 1)/2 random variables.

In Corollary 2.2, we present the exact density function of LAz.
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Corollary 2.2. Assume the same conditions as Theorem 2.2. Let fNp(θ,T)(·) be the density
function of p-dimensional normal with mean θ and covariance matrix T and fχ2

n
(·) be the

density function of χ2 variable with degrees of freedom n. The density function of LAz is
given by

fLAz(x) =

∫ ∞

0

∫ ∞

0

∫

Rp

fNp(µ̄,Σ̄)(x|ξ = v,y1 = z1, η = z2)fNp(S1Σ̃1/2µ̃,S1Σ̃S′
1)
(z1)fχ2

n
(v)

× fη|y1(z2|y1 = z1)dz1dz2dv,

where µ̄ = ξ(LΣL′)1/2y1 and Σ̄ = ξ(LΣL′)1/2[(y′
1y1 + η)Ip − y1y′

1](LΣL′)1/2.

Proof. From the stochastic representation in Theorem 2.1, the conditional distribution of
LAz given ξ, y1 and η is Np(µ̄, Σ̄), where µ̄ and Σ̄ are defined in Corollary 2.2. To
obtain the unconditional density function of LAz, we firstly construct the joint density
function of LAz, ξ, y1 and η, and then compute the marginal density function of LAz by
integrating out the two random variables ξ and η as well as the random vector y1.

The conditional distribution of y2 given y1 is the k−p dimensional normal distribution
with the mean vector ν and covariance matrix Ψ, where

ν = S2Σ̃
1/2µ̃+ S2Σ̃S′

1(S1Σ̃S′
1)

−1(y1 − S1Σ̃
1/2µ̃),

Ψ = S2Σ̃S′
2 − S2Σ̃S′

1(S1Σ̃S′
1)

−1S1Σ̃S′
2.

Let pFq(a1, · · · , ap : b1, · · · , bq; z) is the generalized hypergeometric function defined as

pFq(a1, · · · , ap : b1, · · · , bq; z) =
∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k − 1). It is noted that z can be a complex variable,
whereas bi for i = 1, · · · q are not allowed to take zero or a negative integer. In addition,
if any numerator parameters is zero or a negative integer, the generalized hypergeometric
function is a finite polynomials. The convergence of this series is documented for all finite
z if p ≤ q, while for |z| < 1 if p = q + 1. Conversely, this series diverges for |z| > 1 if
p = q + 1 and all z != 0 if p > q + 1.

The density function of the product involves the conditional density function of the
quadratic form η given y1, which is of the form

fη|y1 (y) =
∞∑

i=0

ci
i!

2βΓ
(
k−p
2 + i

)
(

y

2β

) k−p
2 −1

exp

(
− y

2β

)
L
( k−p

2 −1)
i

(
y

2β

)
,

where β is an arbitrary positive constant, and L(α)
i (x) is the generalized Laguerre polyno-

mial defined as

L(α)
i (x) =

i∑

r=0

(−x)r

r!(k − r)!
(α + r + 1)(α + r + 2) · · · (α + i)
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=
(α + 1)k

k!
1F1 (−k,α + 1; x)

=
(−x)i

i!
2F0 (−i,−α− i;−1/x) .

In addition, the coefficients ck for k = 1, 2, 3, · · · are available from the formula

c0 = 1, ci =
1

i!

i−1∑

r=0

di−rcr, dj =
1

2

k−p∑

j1=1

(1− jb2j1)(2αj1)
−j, j ≥ 1,

where
H′ΨH = diag(α1, · · · ,αk−p), HH′ = Ik−p

and α1, · · · ,αk−p are the eigenvalues of Ψ and b = (b1, · · · , bk−p)′ = H′Ψ− 1
2ν.

If we put Σ = Ik and Ω = λIk in Corollary 2.2, then the density function of LAz is
given by

fLAz(x) =

∫ ∞

0

∫ ∞

0

∫

Rp

fNp(µ̄,Σ̄)(x|ξ = v,y1 = z1, η = z2)fNp(S1µ̃,λS1S′
1)
(z1)fχ2

n
(v)

× fχ2
k−p;δ

2(λ−1z2|y1 = z1)dz1dz2dv,

where µ̄ = ξ(LL′)1/2y1, Σ̄ = ξ(LL′)1/2[(y′
1y1 + η)Ip − y1y′

1](LL
′)1/2 and δ2 =

λ−1µ′S′
2S2µ. Although the proof of this result is in line with the proof of Corollary

2 in Bodnar et al. (2013), the following explanation is omitted in their paper. Since
Q(Ik −Q) = S′

1S1S′
2S2 = 0, we can obtain tr(S1S′

2S2S′
1) = 0. If we use Lemma 5.3.1

of Harville (1997) with A = S1S2, then S1S2 = 0.

2.2.2 Exact moments

To understand the characteristics of the distribution of the product, it is important to
compute the moments. In particular, the skewness and kurtosis play important roles in
measuring the deviation from a normal distribution.

By using the similar approach which is detailed in Javed et al. (2021), we can compute
the higher order moments of the product as follows:

Theorem 2.3. Assume the same conditions as Theorem 2.1. Let l be a constant vector.
The higher order moments of l′Az are expressed by

E[(l′Az)r] = (l′Σl)r/2
$r/2%∑

j=0

(
r

2j

)
(2j)!

2jj!

2r−jΓ(n/2 + r − j)

Γ(n/2)

× 1

(r − j)!

j∑

ν1=0

r−2j∑

ν2=0

(−1)ν1+ν2

(
j

ν1

)(
r − 2j

ν2

)
E
[
(h1y

′By + h2b
′y)r−j

]
, (12)

where h1 = j/2− ν1, h2 = r/2− j − ν2, B = diag(0, 1, · · · , 1) and b = (1, 0, · · · , 0)′.
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Proof. If we put p = 1 at Theorem 2.1, then

l′Az
d
= (l′Σl)1/2(ξy1 +

√
ξηz0),

where η = y′
2y2, ξ ∼ χ2

n, z0 ∼ N(0, 1) and

y =

(
y1

y2

)
∼ Nk

((
S1Σ̃1/2µ̃

S2Σ̃1/2µ̃

)
,

(
S1Σ̃S′

1 S1Σ̃S′
2

S2Σ̃S′
1 S2Σ̃S′

2

))
,

where µ̃ = Ω−1/2µ, S1 = (l′Σl)−1/2l′Ω−1/2Σ̃1/2, and S2 = (Ik − S′
1S1)1/2. In addition,

ξ and z0 are independent of y. The r-th moment of l′Az is computed by

E[(l′Az)r] = (l′Σl)r/2E
[
(ξy1 +

√
ξηz0)

r
]
= (l′Σl)r/2E

[
r∑

i=0

(
r

i

)
(ξy1)

r−i(
√
ξηz0)

i

]

= (l′Σl)r/2
r∑

i=0

(
r

i

)
E
[
ξr−i/2

]
E
[
yr−i
1 ηi/2

]
E
[
zi0
]
, (13)

where the second line follows from the fact that ξ and z0 are independent of y. According
to Javed et al. (2021), the even moments of z0 are given by

E[z2j0 ] =
(2j)!

2jj!
for j ≥ 1. (14)

In addition, the s-th moment of a chi-squared variable is given by

E[ξs] =
2sΓ(n/2 + s)

Γ(n/2)
. (15)

If we put i = 2j in (13), and apply (14) and (15) to (13), then we get

E[(l′Az)r] = (l′Σl)r/2
$r/2%∑

j=0

(
r

2j

)
(2j)!

2jj!

2r−jΓ(n/2 + r − j)

Γ(n/2)
E
[
ηjyr−2j

1

]
, (16)

where the expectation of the right side is taken over the joint distribution of y1 and y2. If
we apply the identity (2) given by Kan (2008) to (16), then

E
[
ηjyr−2j

1

]
=

1

(r − j)!

j∑

ν1=0

r−2j∑

ν2=0

(−1)ν1+ν2

(
j

ν1

)(
r − 2j

ν2

)
E
[
(h1η + h2y1)

r−j
]
,

=
1

(r − j)!

j∑

ν1=0

r−2j∑

ν2=0

(−1)ν1+ν2

(
j

ν1

)(
r − 2j

ν2

)
E
[
(h1y

′By + h2b
′y)r−j

]
,

whereh1 = j/2−ν1, h2 = r/2−j−ν2,B = diag(0, 1, · · · , 1) andb = (1, 0, · · · , 0)′.

If we put

θ =

(
S1Σ̃1/2µ̃

S2Σ̃1/2µ̃

)
,T =

(
S1Σ̃S′

1 S1Σ̃S′
2

S2Σ̃S′
1 S2Σ̃S′

2

)
,

17



then Theorem 3.2b.3 of Mathai and Provost (1992) shows

E[(h1y
′By + h2b

′x)r−j]

=
r−j−1∑

t1=0

(
r − j − 1

t1

)
g(t−1−t1)

t1−1∑

t2=0

(
t1 − 1

t2

)
g(t1−1−t2) · · · (17)

with

g(m) =






1

2
m!

k∑

i=1

(2h1λi)
m+1 +

(m+ 1)!

2

k∑

i=1

b∗2i (2h1λi)
m−1, m ≥ 1,

h1

k∑

i=1

λi + (h2b
′θ + h1θ

′Bθ) m = 0,

(18)

whereP′T1/2BT1/2P = diag(λ1, · · · ,λk) for an orthogonal matrixP, andP′(T1/2bh2+

2T1/2Bθh1) = b∗ = (b∗1, · · · , b∗k)′.
Using (12) and (17), we can deliver the first four moments of l′Az in the following

corollary.

Corollary 2.4. Assume the same conditions as Theorem 2.3. Then, the mean, variance,
skewness and kurtosis of l′Az are given by

E[l′Az] = na,

V[l′Az] = n[a2 + (n+ 1)f + bs],

Skewness[l′Az] =
2 {a3 + 3[bs+ (n+ 1)f ]a+ 3bd(n+ 2)}√

n[a2 + (n+ 1)f + bs]3/2
,

Kurtosis[l′Az] =
3

n[a2 + (n+ 1)f + bs]2

×
{
(n+ 2)a4 + 2[bs+ (n+ 1)f ](n+ 6)a2 + 24bd(n+ 2)a

+(n+ 2)[(s2 + 4g + 2t)b2 + 2(n+ 3)(fs+ 2h)b+ (n+ 1)(n+ 3)f 2]},

where a = l′Σµ, b = l′Σl, d = l′ΣΩΣµ, f = l′ΣΩΣl, g = µ′ΣΩΣµ, h =

l′ΣΩΣΩΣl, s = µ′Σµ+ tr(ΣΩ) and t = tr(ΣΩΣΩ).

The proof of this corollary is given in Appendix.
If we put Σ = Ik, Ω = λIk with λ > 0, and µ = 0 at Theorem 2.3, the general

moment of l′Az is simply expressed.

Corollary 2.5. Let A ∼ Wk(n, Ik) and z ∼ Nk(0,λIk) with λ > 0, where A and z are
independent. Then, the higher order moment of l′Az is given by

E[(l′Az)2m] = (l′l)m(2λ)m
m∑

j=0

(2m)!

j!(m− j)!

Γ(n/2 + 2m− j)

Γ(n/2)

Γ((k − 1)/2 + j)

Γ((k − 1)/2)
.
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Proof. If we put Σ = Ik, Ω = λIk and µ = 0, (16) becomes

E[(l′Az)r] = (l′l)r/2
$r/2%∑

j=0

(
r

2j

)
(2j)!

2jj!

2r−jΓ(n/2 + r − j)

Γ(n/2)
E[ηj]E[yr−2j

1 ]. (19)

Since E[yr−2j
1 ] = 0 when r is odd, we put r = 2m in (19). Then,

E[(l′Az)2m] = (l′l)m
m∑

j=0

(
2m

2j

)
(2j)!

2jj!

22m−jΓ(n/2 + 2m− j)

Γ(n/2)
E[ηj]E[y2m−2j

1 ],

Since (10) given by Bodnar et al. (2013) shows that λ−1η ∼ χ2
k−1 and y1 ∼ N(0, 1),

E[(l′Az)2m] = (l′l)m
m∑

j=0

(
2m

2j

)
(2j)!

2jj!

22m−jΓ(n/2 + 2m− j)

Γ(n/2)

× λj
2jΓ((k − 1)/2 + j)

Γ((k − 1)/2)
λm−j (2(m− j))!

2m−j(m− j)!

= (l′l)m
m∑

j=0

(
2m

2j

)
(2j)!

j!

(2λ)mΓ(n/2 + 2m− j)

Γ(n/2)

× Γ((k − 1)/2 + j)

Γ((k − 1)/2)

(2(m− j))!

(m− j)!

= (l′l)m
m∑

j=0

(2m)!

(2j)!(2m− 2j)!

(2j)!

j!

(2λ)mΓ(n/2 + 2m− j)

Γ(n/2)

× Γ((k − 1)/2 + j)

Γ((k − 1)/2)

(2(m− j))!

(m− j)!

= (l′l)m
m∑

j=0

(2m)!

j!

(2λ)mΓ(n/2 + 2m− j)

Γ(n/2)

Γ((k − 1)/2 + j)

Γ((k − 1)/2)

1

(m− j)!

= (l′l)m(2λ)m
m∑

j=0

(2m)!

j!(m− j)!

Γ(n/2 + 2m− j)

Γ(n/2)

Γ((k − 1)/2 + j)

Γ((k − 1)/2)
.

In particular, all odd moments are 0, and

V[l′Az] = n(n+ k + 1)l′l,

Kurtosis[l′Az] = 3

(
1 +

2

n

)
k(k + 1) + (n+ 3)(n+ 2k + 5)

(n+ k + 1)2
.

These results suggest that if A ∼ Wk(n, Ik) and z ∼ Nk(0,λIk), then the distribution of
any linear combination of the elements of Az is not skewed and has the same kurtosis.

In the next corollary, we also provide the first and second moments of Az.

19



Corollary 2.6. Assume the same conditions as Theorem 2.1. The mean vector and
covariance matrix of Az are given by

E[Az] = nΣµ,

E[(Az− E(Az))(Az− E(Az))′] = n{Σµµ′Σ+ (n+ 1)ΣΩΣ+ (µ′Σµ+ tr(ΣΩ))Σ}.

Proof. Since the variance of l′Az is written by

nl′[Σµµ′Σ+ (n+ 1)ΣΩΣ+ (µ′Σµ+ tr(ΣΩ))Σ]l,

the desired results follow immediately.

Remark 2.7. The derivation of the higher order moments of l′Az is based on the stochastic
representation given in Theorem 2.1. Since A and z are independent, the conditional
distribution of l′Az given A is N(l′Aµ, l′AΩAl). If we can evaluate the higher order
moments of A, we can also evaluate the higher order moments of l′Az. In Appendix, we
derive the general formulae for the higher order moments of a Wishart matrix, and apply
the formulae to obtain the first four moments of l′Az.

2.3 Numerical Illustration
In the previous section, we obtain the stochastic representation and density function of
the product of a Wishart matrix and a normal vector. Since the density function generally
involves the multi-dimensional integrals, it is difficult to understand the characteristics
of the distribution of the product. To capture the characteristics of the distribution of
the product numerically, in this section, we compute the moments of l′Az where A ∼
Wk(n,Σ) and z ∼ Nk(µ,Ω). Throughout this section, the singularity of a Wishart
matrix is permitted. Using Theorem 2 of Bodnar et al. (2014) and Theorem 3.2.5 of
Muirhead (1982), the stochastic representation of l′Az becomes

l′Az
d
= (Σ1/2l)′A1z1, (20)

where A1 ∼ Wk(n, Ik) and z1 ∼ Nk(Σ1/2µ,Σ1/2ΩΣ1/2). If we diagonalize Σ1/2ΩΣ1/2

as H′Σ1/2ΩΣ1/2H = Λ, where Λ is the diagonal matrix with positive eigenvalues in
diagonal elements and H is an orthogonal matrix, then the right side of (20) becomes

(Σ1/2l)′A1z1
d
= (H′Σ1/2l)′H′A1Hz2,

where z2 ∼ Nk(H′Σ1/2µ,Λ). Since H′A1H ∼ Wk(n, Ik), the distribution of l′Az is
identical to that of l′1A2z2, where l1 = H′Σ1/2l,A2 ∼ Wk(n, Ik) andz2 ∼ Nk(H′Σ1/2µ,Λ).
Here, we assume that A ∼ Wk(n, Ik) and z ∼ Nk(µ,Ω), where µ = (µ1, 0, · · · , 0)′ and
Ω = diag(ω1, 1, · · · , 1).
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(d) n = 20, µ1 = 1, ω1 = 1

Figure 2: Plots of the skewness of the first element of Az against the each parameter
of A and z, where A ∼ Wk(n, Ik) and z ∼ Nk(µ,Ω) with µ = (µ1, 0, · · · , 0)′ and
Ω = diag(ω1, 1, · · · , 1).

Figure 2 and 3 plot the skewness and kurtosis, respectively, of l′Az as the function of
the each parameter of A and z; i.e., the first element of µ, the first diagonal element of Ω,
degrees of freedom n and dimension k. The computation of the moments of l′Az is based
on Theorem 2.4. We observe from Figure 2 and 3 that the distribution of l′Az is generally
skewed and heavy tailed. Whereas the skewness decreases with an increase in the first
diagonal element of Ω, the kurtosis may not be changed very much. For a large value of
n or k, the skewness and kurtosis are close to 0 and 3, respectively. These results for a
large n seem natural when it is noted that the A/n converges to Σ. If the first element of
µ becomes large, it appears that the skewness and kurtosis converge to a constant value at
around 0.65 and 3.6, respectively.
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Figure 3: Plots of the kurtosis of the first element of Az against the each parameter
of A and z where A ∼ Wk(n, Ik) and z ∼ Nk(µ,Ω) with µ = (µ1, 0, · · · , 0)′ and
Ω = diag(ω1, 1, · · · , 1).
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2.4 Finite Sample Performance
In the previous section, we have derived the general expression of the higher order moment
of the product of a (singular) Wishart matrix and a normal vector. The aim of this section
is to investigate the applicability of the Edgeworth type expansion provided in Theorem
3.2.2 of Kollo and von Rosen (2005). Concerning Edgeworth expansions, Javed et al.
(2021) also discussed Edgeworth expansion of random sum of independent and identically
distributed random vectors. To achieve this aim, we compare the kernel density estimator
of the product with the Edgeworth type expansion of the product. In the statistical software
R, kernel density estimation can be implemented by the command "density()". The
comparison is made for p = 1, Σ = Ω = Ik, l = (1/n, 0, · · · , 0)′, and µ = (1, · · · , 1)′.
The kernel density estimator of l′Az is computed based on N = 104 independent and
standardized realizations from the stochastic representation (8) of Bodnar et al. (2013).
To obtain N = 104 realizations of l′Az, we use the following algorithm:

(a) generate independently z0 ∼ N(0, 1), ξ ∼ χ2
n, y1 ∼ N(l′µ/

√
l′l, 1), and η ∼

χ2
k−1,δ2 with δ2 = µ′µ− l′µµ′l/l′l;

(b) compute l′Az =
√
l′l(ξy1 +

√
ξηz0);

(c) repeat (a)-(b) 104 times.

From Theorem 3.2.2 of Kollo and von Rosen (2005), the Edgeworth type expansion
of the standardized l′Az is given by

fl′Az(x) = φ(x)

{
1 + c3

x3 − 3x

6
+ (c4 − 3)

x4 − 4x2 + 1

24
+ · · ·

}
, (21)

where φ(x) is the standard normal density, c3 = Skewness[l′Az] and c4 = Kurtosis[l′Az].
In Figure 4, we present the kernel density estimators and Edgeworth type expansions

of l′Az for several values of k and n. The finite sample distributions are shown as solid
lines, while the Edgeworth type expansions are dashed lines. For small n and k, the
performance of the Edgeworth type expansions could be poor, which indicates that we
should include the moments of order higher than four in the Edgeworth type expansions
given by (21). However, if we increase the dimension k, the approximation for small n is
greatly improved. This is clear by comparing Figure 4a and 4b. In addition, we observe
from Figure 4c and 4d that the Edgeworth type expansions provide a good approximation
for moderately large n.

2.5 Summary
Functions of a Wishart matrix and a normal vector appear in a variety of multivariate
statistical methods, such as principal components analysis, multiple comparison, and
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Figure 4: Edgeworth type expansion and the kernel density estimator based on the finite
sample for the standardized l′Az, where l′ = (1/n, 0, · · · , 0), A ∼ Wk(n, Ik), and
z ∼ Nk((1, · · · , 1)′, Ik) for k ∈ {2, 50} and n ∈ {10, 30}
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discriminant analysis under multivariate normality. Over the past ten years, there has been
an increase in the number of studies on the product of a Wishart matrix and a normal vector.
Although the assumption that A ∼ Wk(n,Σ) and z ∼ Nk(µ,λΣ) for any positive real
numberλ has been employed in the literature, assumingA ∼ Wk(n,Σ) and z ∼ Nk(µ,Ω)

appears natural from the viewpoint of Bayesian statistics. We referred to the assumption
A ∼ Wk(n,Σ) and z ∼ Nk(µ,Ω), which are independent, as the uncommon covariance
structure. In addition, there has been scant research on moments of the product. Thus,
the purpose of this study was to present the stochastic representation, density function
and exact moments under the uncommon covariance structure. We present the stochastic
representation of the product, which is computationally efficient. It is applied to construct
density function and to derive the higher order moments of the product. As detailed in
Section 2.3, the distribution of l′Az is generally skewed and heavy-tailed. If ω1, which is
an eigenvalue of ΣΩ, is large, then the distribution of l′Az is less skewed. When either
dimension or degrees of freedom n of a Wishart matrix is large, the skewness and kurtosis
of l′Az is close to those of a normal distribution. Section 2.4 provide the Edgeworth
type expansions for the distribution of l′Az, and compare the approximation with the
kernel density estimators. A good performance of the approximations is documented for
moderately large n.

Appendix

Proof of Lemma 2.3. We only show the proof for r = 4 since this proof can be applied to
the proofs for r = 1, 2, 3. If we put r = 4 in (12), then E[(l′Az)4]/(l′Σl)2 =

24Γ
(
n
2 + 4

)

Γ
(
n
2

) 1

4!

4∑

ν2=0

(−1)ν2
(
4

ν2

)
E
[
(h1y

′By + h2b
′y)4

]
(22)

+ 6
23Γ

(
n
2 + 3

)

Γ
(
n
2

)
1∑

ν1=0

2∑

ν2=0

(−1)ν1+ν2

(
2

ν2

)
E
[
(h1y

′By + h2b
′y)3

]
(23)

+ 3
22Γ

(
n
2 + 2

)

Γ
(
n
2

) 1

2!

2∑

ν1=0

(−1)ν1
(
2

ν1

)
E
[
(h1y

′By + h2b
′y)2

]
, (24)

where h1 = j/2− ν1 and h2 = 2− j − ν2.
To compute the expectation in (22), we put r = 4 and j = 0 at (17), and obtain

E
[
(h1y

′By + h2b
′y)4

]
= 6g(1)[g(0)]2 + 3[g(1)]2 + [g(0)]4,

with

g(1) =
k∑

i=1

b2i = (2− ν2)
2 l

′ΣΩΣ

l′Σl
= (2− ν2)

2f

b
,
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g(0) = (2− ν2)
l′Σµ√
l′Σl

,

where we have used the (18). Hence (22) becomes

24Γ
(
n
2 + 4

)

Γ
(
n
2

) 1

4!

4∑

ν2=0

(−1)ν2
(
4

ν2

)
(2− ν2)

4

[
6
fa2

b2
+ 3

f 2

b2
+

a4

b2

]
.

To compute the expectation in (23), we put r = 4 and j = 1 at (17), and obtain

E
[
(h1y

′By + h2b
′y)3

]
= g(2) + 3g(1)g(0) + [g(0)]3,

where

g(2) =
k∑

i=1

(2h1λi)
3 + 3

k∑

i=1

b2i (2h1λi)

= 8h3
1 tr[Σ̃(Ik −Q)]3 + 6h1h

2
2a

′TATa+ 24h2
1h2a

′TATAθ + 24h3
1θATATAθ,

g(1) =
1

2

k∑

i=1

(2h1λi)
2 +

k∑

i=1

b2i

= 2h2
1 tr(T

1/2AT1/2)3 + (2h1T
1/2Aθ + h2T

1/2a)′(2h1T
1/2Aθ + h2T

1/2a)

= 2h2
1

[
t− 2h

b
+

f 2

b2
+ 2g − 4ab

b
+

2fa2

b2

]
+ 4h1h2

[
d√
b
− fa

b3/2

]
+ h2

2

f

b
,

g(0) = h1

[
s+ c− f + a2

b

]
+ h2

a√
b
,

where h1 = 1/2− ν1 and h2 = 1− ν2.
Although the terms h3

1, h2
1h2, h1h2

2, h3
2 appear in (23), only the term h1h2

2 remains.
Hence, it is enough to compute the term a′TATa in the above g(2) and obtain

a′TATa = S1Σ̃S′
2S2Σ̃S′

1 =
1

b

(
h− f 2

b

)
.

Hence the equation (23) becomes

1

6

[
12

b
+

6f

b

(
s+ c− f + a2

b

)
+

24a

b

(
d− fa

b

)
+

6a2

b

(
s+ c− f + a2

b

)]
.

To compute the expectation in (24), we put r = 4 and j = 2 at (17), and obtain

E
[
(h1y

′By + h2b
′y)2

]
= g(1) + [g(0)]2,

where h1 = 1− ν1 and h2 = 0. So (24) becomes

3
22Γ

(
n
2 + 2

)

Γ
(
n
2

) 2

(
t− 2h

b
+

f 2

b2
+ 2g − 4ad

b
+

2fa2

b2

)
+

(
s+ c− f + a2

b

)2

.

If we substitute the obtained results for the equations (22), (23) and (24), E[(l′Az)4]

can be obtained.
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The last part of the Appendix presents the higher order expectations of the elements of
a Wishart matrix, which can be applied to derive the higher order moments of the product
of a Wishart matrix and a normal vector. Higher order expectations of the elements
of a Wishart matrix play an important role in multivariate statistical methods, such as
discriminant analysis (see Fujikoshi, 1987; Kubokawa et al., 2013) and a growth curve
model (cf. von Rosen, 1979; von Rosen, 1991b). Several different techniques have been
proposed to compute the higher order expectations of the elements of a Wishart matrix
(cf. Letac and Massam, 2004; von Rosen, 1979, 1991a, 1991b; Haff, 1979a; Gupta and
Nagar, 2000). Here, we employed the method as detailed in Theorem 3.3.15 of Gupta and
Nagar (2000), which used the definition of a Wishart matrix and the higher order moments
of a matrix variate normal distribution. Let A be a k-dimensional Wishart matrix with n

degrees of freedom and covariance matrix Σ: that is, A ∼ Wk(n,Σ). We assume that
n ≥ k, implying that the random matrix A is non-singular. The following third and fourth
order moments of a A are obtained by Letac and Massam (2004):

E[A3] = n{(n2 + 3n+ 4)Σ2 + 2(n+ 1) tr(Σ)Σ+ (n+ 1) tr(Σ2)Ik + tr(Σ)2Ik}Σ,

E[A4] = n{(n3 + 6n2 + 21n+ 20)Σ3 + (3n2 + 9n+ 12) tr(Σ)Σ2

+ (2n2 + 5n+ 5) tr(Σ2)Σ+ 3(n+ 1) tr(Σ)2Σ+ (n2 + 3n+ 4) tr(Σ3)Ik

+ 3(n+ 1) tr(Σ) tr(Σ2)Ik + tr(Σ)3Ik}Σ.

In the following lemma, we derive the expression of E(APAQA) and E(APAQARA).
Lemma 2.8 is not just used to derive the moments of the product of a Wishart matrix and
a normal vector but also to generalize the above result of Letac and Massam (2004).

Lemma 2.8. Let A ∼ Wk(n,Σ) with Σ > 0, and P, Q and R be any square constant
matrices. Then, the expectations of APAQA and APAQARA are given by

E(APAQA) = Σ{(nP+P′)E[AQA] +QE[tr(AP)A] +Q′E[AP′A]

+ tr(PE[AQA])},

E(APAQARA) = Σ{[(nP+P′)Σ(nQ+Q′) +QΣ(P+P′)

+Q′Σ(nP′ +P)]E[ARA] + [(nP+P′)ΣR+R′ΣP′]E[tr(AQ)A]

+ [(nP+P′)ΣR′ +RΣP′]E[AQ′A] + (R+R′)ΣPE[AQA]

+ [QΣ(nR+R′) +Q′ΣR]E[tr(AP)A] + [Q′ΣR′ +RΣQ]E[APA]

+ [R′Σ(nQ′ +Q) +RΣQ′]E[AP′A]}

+Σ{Q tr(PE[tr(AR)A]) +Q′ tr(PE[AR′A])

+ (nR+R′) tr(PE[AQA]) + tr(PΣ(nQ+Q′)E[ARA])

+ tr(PΣR′E[AQ′A]) + tr(PΣRE[tr(AQ)A])

+ tr(QE[ARA])(nΣP+ΣP′ + tr(ΣP))}Σ.
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Proof of Lemma 2.8. Ify1, · · · ,yn are independently and identically distributed asNk(0,Σ),
then the Wishart matrix A is expressed as A =

∑n
r=1 yry′

r. In addition, the (i, j) element
of A can be written as aij =

∑n
r=1 yiryjr, where yt = (y1t, · · · , ykt)′ for t = 1, · · · , n.

Throughout the proof, pij , qij , and rij denote the (i, j) element of P, Q, and R, respec-
tively. The expectation of an (i, j) element of APAQA is written by

E(APAQA) = E

(
k∑

s=1

k∑

l=1

k∑

m=1

k∑

t=1

aispslalmqmtatj

)

=
k∑

s=1

k∑

l=1

k∑

m=1

k∑

t=1

pslqmtE(aisalmatj). (25)

E(aisalmatj) is expressed as

E(aisalmatj) =
n∑

r1=1

n∑

r2=1

n∑

r3=1

E(yir1ysr1ylr2ymr2ytr3yjr3)

=
n∑

r=1

E(yirysrylrymrytryjr) +
n∑

r=1

n∑

r3 '=r

E(yirysrylrymrytr3yjr3)

+
n∑

r=1

n∑

r2 '=r

E(yirysrylr2ymr2ytryjr) +
n∑

r=1

n∑

r1 '=r

E(yir1ysr1ylrymrytryjr)

+
n∑

r1=1

n∑

r2 '=r1

n∑

r3 '=r2 '=r1

E(yir1ysr1ylr2ymr2ytr3yjr3).

Since y1, · · · ,yn are independently and identically distributed as Nk(0,Σ),

E(aisalmatj) = nE(yirysrylrymrytryjr) + n(n− 1)E(yirysrylrymr)E(ytr3yjr3)

+ n(n− 1)E(yirysrytryjr)E(ylr2ymr2) + n(n− 1)E(ylrymrytryjr)E(yir1ysr1)

+ n(n− 1)(n− 2)E(yir1ysr1)E(ylr2ymr2)E(ytr3yjr3).

Let σij denote the (i, j) element of Σ. Using Isserlis’ theorem (cf. Isserlis, 1918),

E(aisalmatj) = n(σisσlmσtj + σisσltσmj + σisσljσmt + σilσsmσtj + σilσstσmj

+ σilσsjσmt + σimσslσtj + σimσstσlj + σimσsjσlt + σitσslσmj

+ σitσsmσlj + σitσsjσlm + σijσslσmt + σijσsmσlt + σijσstσlm)

+ n(n− 1)(σisσlmσtj + σilσsmσtj + σimσslσtj + σisσlmσtj

+ σitσsjσlm + σijσstσlm + σisσlmσtj + σisσltσmj + σisσljσmt)

+ n(n− 1)(n− 2)σisσlmσtj. (26)

If we put (26) into (25), then

E(APAQA) =
k∑

s=1

k∑

l=1

k∑

m=1

k∑

t=1

[n(σispslσlmqmtσtj + σispslσltqmtσmj + σmtqmtσispslσlj
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+ σilpslσsmqmtσtj + σilpslσstqmtσmj + σmtqmtσilpslσsj + σslpslσimqmtσtj

+ σimqmtσstpslσlj + σimqmtσltpslσsj + σitqmtσmjσslpsl + σitqmtσsmpslσlj

+ σitqmtσlmpslσsj + σijσslpslσmtqmt + σijσsmqmtσltpsl + σijσstqmtσlmpsl)

+ n(n− 1)(3σispslσlmqmtσtj + σilpslσsmqmtσtj + σslpslσimqmtσtj

+ σitqmtσlmpslσsj + σijpslσstqmtσlm + σispslσltqmtσmj + σispslσljσmtqmt)

+ n(n− 1)(n− 2)σispslσlmqmtσtj]

= n(ΣPΣQΣ+ΣPΣQ′Σ+ΣQΣPΣ+ΣP′ΣQΣ+ΣP′ΣQ′Σ

+ tr(ΣQ)ΣP′Σ+ tr(ΣP)ΣQΣ+ΣQΣPΣ+ΣQΣP′Σ+ tr(ΣP)ΣQΣ

+ΣQ′ΣPΣ+ΣQ′ΣP′Σ+ tr(ΣP) tr(ΣQ)Σ+ tr(ΣQΣP′)Σ

+ tr(ΣQ′ΣP′)Σ+ n(n− 1)(3ΣPΣQΣ+ΣP′ΣQΣ+ tr(ΣP)ΣQΣ

+ΣQ′ΣP′Σ+ΣP′ΣQ′Σ+ΣPΣQ′Σ+ΣPΣ tr(ΣQ))

+ n(n− 1)(n− 2)ΣPΣQΣ. (27)

If we arrange the terms involving ΣP, ΣP′, ΣQ, ΣQ′, and the others, then

E(APAQA) = n{nΣP[nΣQ+ΣQ′ + tr(ΣQ)] +ΣP′[nΣQ+ΣQ′ + tr(ΣQ)]

+ΣQ[ΣP+ΣP′ + n tr(ΣP)] +ΣQ′[ΣP+ nΣP′ + tr(ΣP)]

+ tr(ΣP[nΣQ+ΣQ′ + tr(ΣQ)])}Σ. (28)

From Theorem 3.3.15 of Gupta and Nagar (2000), the above equation becomes

E(APAQA) = nΣPE[AQA] +ΣP′E[AQA] +ΣQE[tr(AP)A]

+ΣQ′E[AP′A] + tr(PE[AQA])Σ.

The proof for E(APAQA) is completed.
The expectation of the (i, j) element of APAQARA is written by

E(APAQARA) = E

(
k∑

s=1

k∑

l=1

k∑

m=1

k∑

t=1

k∑

u=1

k∑

v=1

aispslalmqmtaturuvavj

)

=
k∑

s=1

k∑

l=1

k∑

m=1

k∑

t=1

k∑

u=1

k∑

v=1

pslqmtruvE(aisalmatuavj). (29)

E(aisalmatuavj) is expressed as

E(aisalmatuavj) =
n∑

r1=1

n∑

r2=1

n∑

r3=1

n∑

r4=1

E(yir1ysr1ylr2ymr2ytr3yur3yvr4yjr4)

=
n∑

r=1

E(yirykrylrymrytryuryvryjr) +
n∑

r=1

n∑

r4 '=r

E(yirykrylrymrytryuryvr4yjr4)
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+
n∑

r=1

n∑

r3 '=r

E(yirysrylrymrytr3yur3yvryjr) +
n∑

r=1

n∑

r2 '=r

E(yirysrylr2ymr2ytryuryvryjr)

+
n∑

r=1

n∑

r1 '=r

E(yir1ysr1ylrymrytryuryvryjr) +
n∑

r=1

n∑

w '=r

E(yirysrylrymrytwyuwyvwyjw)

+
n∑

r=1

n∑

w '=r

E(yirysrylwymwytryuryvwyjw) +
n∑

r=1

n∑

w '=r

E(yirysrylwymwytwyuwyvryjr)

+
n∑

r=1

n∑

r3 '=r

n∑

r4 '=r3 '=r

E(yirysrylrymrytr3yur3yvr4yjr4)

+
n∑

r=1

n∑

r2 '=r

n∑

r4 '=r2 '=r

E(yirysrylr2ymr2ytryuryvr4yjr4)

+
n∑

r=1

n∑

r2 '=r

n∑

r3 '=r2 '=r

E(yirysrylr2ymr2ytr3yur3yvryjr)

+
n∑

r=1

n∑

r1 '=r

n∑

r4 '=r1 '=r

E(yir1ysr1ylrymrytryuryvr4yjr4)

+
n∑

r=1

n∑

r1 '=r

n∑

r3 '=r1 '=r

E(yir1ysr1ylrymrytr3yur3yvryjr)

+
n∑

r=1

n∑

r1 '=r

n∑

r2 '=r1 '=r

E(yir1ysr1ylr2ymr2ytryuryvryjr)

+
n∑

r1 '=r2 '=r3 '=r4

E(yir1ysr1ylr2ymr2ytr3yur3yvr4yjr4). (30)

In (30), there are many expectations to be evaluated. Based on Isserlis’ theorem, these
expectations are expressed only by elements of Σ like (26). If we substitute (30) for (29),
we obtain

E(APAQARA) = n{n3ΣPΣQΣR + n2 [ΣPΣQΣR′ + tr(ΣR)ΣPΣQ +ΣPΣQ′ΣR

+ tr(ΣQ)ΣPΣR +ΣPΣR′ΣQ′ + tr(ΣQΣR)ΣP +ΣP′ΣQΣR + tr(ΣP)ΣQΣR

++ΣQ′ΣP′ΣR + tr(ΣPΣQ)ΣR +ΣR′ΣQ′ΣP′ + tr(ΣPΣQΣR)]

+ n[ΣPΣQ′ΣR′ + tr(ΣR)ΣPΣQ′ +ΣPΣRΣQ +ΣPΣRΣQ′ + tr(ΣQ)ΣPΣR′

+ΣPΣR′ΣQ + tr(ΣQ) tr(ΣR)ΣP + tr(ΣQΣR′)ΣP +ΣP′ΣQΣR′ + tr(ΣR)ΣP′ΣQ

+ΣP′ΣQ′ΣR + tr(ΣQ)ΣP′ΣR +ΣP′ΣR′ΣQ′ + tr(ΣQΣR)ΣP′ + tr(ΣP)ΣQΣR′

+ tr(ΣP) tr(ΣR)ΣQ +ΣQΣPΣR +ΣQΣP′ΣR +ΣQΣRΣP +ΣQΣRΣP′

+ tr(ΣP)ΣQ′ΣR +ΣQ′ΣPΣR + tr(ΣPΣR′)ΣQ′ +ΣQ′ΣR′ΣP +ΣQ′ΣP′ΣR′

+ tr(ΣR)ΣQ′ΣP′ + tr(ΣP) tr(ΣQ)ΣR + tr(ΣPΣQ′)ΣR +ΣRΣP′ΣQ′ +ΣRΣQΣP

+ΣRΣPΣQ +ΣRΣQ′ΣP′ + tr(ΣP)ΣR′ΣQ′ +ΣR′ΣQ′ΣP + tr(ΣPΣQ)ΣR′
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+ΣR′ΣPΣQ +ΣR′ΣQΣP′ + tr(ΣQ)ΣR′ΣP′ + tr(ΣP) tr(ΣQΣR) + tr(ΣPΣR′ΣQ′)

+ tr(ΣPΣQ) tr(ΣR) + tr(ΣPΣQΣR) + tr(ΣPΣQ′ΣR) + tr(ΣPΣR) tr(ΣQ)]

+ΣP′ΣQ′ΣR′ + tr(ΣR)ΣP′ΣQ′ +ΣP′ΣRΣQ +ΣP′ΣRΣQ′ + tr(ΣQ)ΣP′ΣR′

+ΣP′ΣR′ΣQ + tr(ΣQ) tr(ΣR)ΣP′ + tr(ΣQΣR′)ΣP′ +ΣQΣPΣR′ + tr(ΣR)ΣQΣP

+ tr(ΣPΣR′)ΣQ +ΣQΣR′ΣP +ΣQΣP′ΣR′ + tr(ΣPΣR)ΣQ + tr(ΣR)ΣQΣP′

+ΣQΣR′ΣP′ + tr(ΣP)ΣQ′ΣR′ + tr(ΣP) tr(ΣR)ΣQ′ +ΣQ′ΣPΣR′

+ tr(ΣR)ΣQ′ΣP + tr(ΣR′ΣP′)ΣQ′ +ΣQ′ΣRΣP +ΣQ′ΣR′ΣP′ +ΣQ′ΣRΣP′

+ tr(ΣP)ΣRΣQ + tr(ΣP)ΣRΣQ′ +ΣRΣP′ΣQ +ΣRΣQ′ΣP +ΣRΣPΣQ′

+ tr(ΣQ)ΣRΣP +ΣRΣQΣP′ + tr(ΣQ)ΣRΣP′ + tr(ΣP) tr(ΣQ)ΣR′

+ tr(ΣP)ΣR′ΣQ + tr(ΣPΣQ′)ΣR′ +ΣR′ΣP′ΣQ +ΣR′ΣP′ΣQ′ +ΣR′ΣQΣP

+ΣR′ΣPΣQ′ + tr(ΣQ)ΣR′ΣP + tr(ΣP) tr(ΣQ) tr(ΣR) + tr(ΣP) tr(ΣQΣR′)

+ tr(ΣPΣQ′) tr(ΣR) + tr(ΣPΣRΣQ′) + tr(ΣPΣRΣQ) + tr(ΣPΣR′ΣQ)

+ tr(ΣPΣQ′ΣR′) + tr(ΣPΣR′) tr(ΣQ)}Σ,

where ΣB = ΣB. If we arrange the terms involving ΣP, ΣP′, ΣQ, ΣQ′, ΣR, ΣR′,
and the others, then E(APAQARA) is expressed by sum of the following terms:

F1 = nΣP[n
3ΣQΣR + n2{ΣQΣR′ + tr(ΣR)ΣQ +ΣQ′ΣR + tr(ΣQ)ΣR +ΣR′ΣQ′

+ tr(ΣQΣR)}+ n{ΣQ′ΣR′ + tr(ΣR)ΣQ′ +ΣRΣQ +ΣRΣQ′ + tr(ΣQ)ΣR′

+ΣR′ΣQ + tr(ΣQ) tr(ΣR) + tr(ΣQΣR′)}]Σ,

F2 = nΣP′ [n2ΣQΣR + n{ΣQΣR′ + tr(ΣR)ΣQ +ΣQ′ΣR + tr(ΣQ)ΣR +ΣR′ΣQ′

+ tr(ΣQΣR)}+ΣQ′ΣR′ + tr(ΣR)ΣQ′ +ΣRΣQ +ΣRΣQ′ + tr(ΣQ)ΣR′

+ΣR′ΣQ + tr(ΣQ) tr(ΣR) + tr(ΣQΣR′)]Σ,

F3 = nΣQ[n
2tr(ΣP)ΣR + n{tr(ΣP)ΣR′ + tr(ΣP) tr(ΣR) +ΣPΣR +ΣP′ΣR

+ΣRΣP +ΣRΣP′}+ΣPΣR′ + tr(ΣR)ΣP + tr(ΣPΣR′) +ΣR′ΣP +ΣP′ΣR′

+ tr(ΣPΣR) + tr(ΣR)ΣP′ + tr(ΣR′ΣP′)]Σ,

F4 = nΣQ′ [n2ΣP′ΣR + n{tr(ΣP)ΣR +ΣPΣR + tr(ΣPΣR′) +ΣR′ΣP

+ΣP′ΣR′ + tr(ΣR)ΣP′}+ tr(ΣP)ΣR′ + tr(ΣP) tr(ΣR) +ΣPΣR′ + tr(ΣR)ΣP

+ tr(ΣR′ΣP′) +ΣRΣP +ΣR′ΣP′ +ΣRΣP′ ]Σ,

F5 = nΣR[n
2tr(ΣPΣQ) + n{tr(ΣP) tr(ΣQ) + tr(ΣPΣQ′) +ΣP′ΣQ′ +ΣQΣP
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+ΣPΣQ +ΣQ′ΣP′}+ tr(ΣP)ΣQ + tr(ΣP)ΣQ′ +ΣP′ΣQ +ΣQ′ΣP +ΣPΣQ′

+ tr(ΣQ)ΣP +ΣQΣP′ + tr(ΣQ)ΣP′ ]Σ,

F6 = nΣR′ [n2ΣQ′ΣP′ + n{tr(ΣP)ΣQ′ +ΣQ′ΣP + tr(ΣPΣQ) +ΣPΣQ +ΣQΣP′

+ tr(ΣQ)ΣP′}+ tr(ΣP) tr(ΣQ) + tr(ΣP)ΣQ + tr(ΣPΣQ′) +ΣP′ΣQ

++ΣQΣP +ΣPΣQ′ + tr(ΣQ)ΣP]Σ,

F7 = n tr(ΣP[n
2ΣQΣR + n{ΣQΣR′ + tr(ΣR)ΣQ +ΣQ′ΣR + tr(ΣQ)ΣR +ΣR′ΣQ′

+ tr(ΣQΣR)}+ΣQ′ΣR′ + tr(ΣR)ΣQ′ +ΣRΣQ +ΣRΣQ′ + tr(ΣQ)ΣR′

+ΣR′ΣQ + tr(ΣQ) tr(ΣR) + tr(ΣQΣR′)])Σ,

If we further arrange the equations F1, · · · , F7, then

F1 = nΣPΣQ[n
3ΣR + n2ΣR′ + n2tr(ΣR)]Σ+ nΣPΣQ′ [n2ΣR + nΣR′ + ntr(ΣR)]Σ

+ nΣPΣR[n
2 tr(ΣQ) + nΣQ + nΣQ′ ]Σ+ nΣPΣR′ [n2ΣQ′ + n tr(ΣQ) + nΣQ]Σ

+ nΣP tr(ΣQ[n
2ΣR + n tr(ΣQ) + nΣR′ ])Σ,

= n2ΣPΣQE[ARA] + nΣPΣQ′E[ARA] + nΣPΣRE[tr(QA)A]

+ nΣPΣR′E[AQ′A] + nΣP tr(QE[ARA])Σ,

F2 = nΣP′ΣQ[n
2ΣR + nΣR′ + ntr(ΣR)]Σ+ nΣP′ΣQ′ [nΣR +ΣR′ + tr(ΣR)]Σ

+ nΣP′ΣR[n tr(ΣQ) +ΣQ +ΣQ′ ]Σ+ nΣP′ΣR′ [nΣQ′ + tr(ΣQ) +ΣQ]Σ

+ nΣP′ tr(ΣQ[nΣR + tr(ΣQ) +ΣR′ ])Σ,

= nΣP′ΣQE[ARA] +ΣP′ΣQ′E[ARA] +ΣP′ΣRE[tr(QA)A]

+ΣP′ΣR′E[AQ′A] +ΣP′ tr(QE[ARA])Σ,

F3 = nΣQΣR[nΣP + nΣP′ + n2tr(ΣP)]Σ+ nΣQΣR′ [ΣP +ΣP′ + ntr(ΣP)]Σ

+ nΣQΣP[tr(ΣR) + nΣR +ΣR′ ]Σ+ nΣQΣP′ [nΣR + tr(ΣR) +ΣR′ ]Σ

+ nΣQ tr(ΣP[ΣR + n tr(ΣR) +ΣR′ ])Σ,

= nΣQΣRE[APA] +ΣQΣR′E[tr(PA)A] +ΣQΣPE[ARA] +ΣQΣP′E[ARA]

+ΣQ tr(PE[tr(RA)A])Σ,

F4 = nΣQ′ΣP′ [n2ΣR + nΣR′ + ntr(ΣR)]Σ+ nΣQ′ΣP[nΣR +ΣR′ + tr(ΣR)]Σ

+ nΣQ′ΣR′ [tr(ΣP) + nΣP +ΣP′ ]Σ+ nΣQ′ΣR[ΣP + n tr(ΣP) +ΣP′ ]Σ

+ nΣQ′ tr(ΣP[nΣR′ + tr(ΣR) +ΣR])Σ,
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= nΣQ′ΣP′E[ARA] +ΣQ′ΣPE[ARA] +ΣQ′ΣR′E[APA]

+ΣQ′ΣRE[tr(PA)A] +ΣQ′ tr(ΣPE[AR′A])Σ,

F5 = nΣRΣP[nΣQ +ΣQ′ + tr(ΣQ)]Σ+ nΣRΣP′ [nΣQ′ +ΣQ + tr(ΣQ)]Σ

+ nΣRΣQ[tr(ΣP) + nΣP +ΣP′ ]Σ+ nΣRΣQ′ [ΣP + tr(ΣP) + nΣP′ ]Σ

+ nΣR tr(ΣP[n
2ΣQ + n tr(ΣQ) +ΣQ′ ])Σ,

= ΣRΣPE[AQA] +ΣRΣP′E[AQ′A] +ΣRΣQE[APA] +ΣRΣQ′E[AP′A]

+ nΣR tr(PE[tr(QA)A])Σ,

F6 = nΣR′ΣQ′ [n2ΣP′ + nΣP + ntr(ΣP)]Σ+ nΣR′ΣP[nΣQ +ΣQ′ + tr(ΣQ)]Σ

+ nΣR′ΣP′ [n tr(ΣQ) +ΣQ +ΣQ′ ]Σ+ nΣR′ΣQ[ΣP + tr(ΣP) + nΣP′ ]Σ

+ nΣR′ tr(ΣP[ΣQ′ + tr(ΣQ) + nΣQ])Σ,

= nΣR′ΣQ′E[AP′A] +ΣR′ΣPE[AQA] +ΣR′ΣP′E[tr(QA)A]

+ΣR′ΣQE[AP′A] + nΣR′ tr(PE[AQA])Σ,

F7 = n tr(ΣPΣQ[n
2ΣR + nΣR′ + ntr(ΣR)] + nΣPΣQ′ [nΣR +ΣR′ + tr(ΣR)]

+ nΣPΣR[n tr(ΣQ) +ΣQ +ΣQ′ ] + nΣPΣR′ [nΣQ′ + tr(ΣQ) +ΣQ]

+ nΣP tr(ΣQ[nΣR + tr(ΣR) +ΣR′ ]))Σ

= n tr(ΣPΣQE[ARA] +ΣPΣQ′E[ARA] +ΣPΣRE[tr(QA)A]

+ΣPΣR′E[AQ′A] +ΣP tr(QE[ARA]))Σ,

where we have used Theorem 3.3.15 of Gupta and Nagar (2000).
If we take the summation of F1 to F7, after some cumbersome calculations, we can

obtain the desired result.

As mentioned in Section 2.2, since the conditional distribution of l′Az given A is
l′Az|A ∼ N(l′Aµ, l′AΩAl), the first four moments of v = l′Az can be computed as

E[v] = l′E(A)µ, (31)

E[v2] = E[(l′Aµ)2 + l′AΩAl] = l′E[Aµµ′A+AΩA]l, (32)

E[v3] = E[(l′Aµ)3 + 3l′Aµl′AΩAl] = l′E[Aµl′Aµµ′A+ 3Aµl′AΩA]l, (33)

E[v4] = E[(l′Aµ)4 + 6(l′Aµ)2l′AΩAl+ 3(l′AΩAl)2]

= l′E[Aµl′Aµl′Aµµ′A+ 6Aµl′Aµl′AΩA+ 3AΩAll′AΩA]l. (34)

Substituting E(A) = nΣ for (31), we have E(v) = nl′Σµ. Applying Theorem 3.3.15 (ii)
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of Gupta and Nagar (2000) to (32), we get

E[v2] = n(l′ΣΩΣl+ tr(ΣΩ)l′Σl+ nl′ΣΩΣl

+ l′Σµµ′Σl+ tr(Σµµ′)l′Σl+ nl′Σµµ′Σl).

We can obtain the variance of v by computing E[v2] − [E(v)]2. Applying Lemma 2.8 to
(33) and (34), after some algebraic calculations, we can obtain the same expressions of
skewness and kurtosis as Corollary 2.4.
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3 On the product of a Wishart matrix and a normal vector
with a dependence structure

3.1 Introduction
Over the past decade, there has been an increase in the number of studies on functions of a
Wishart matrix and a normal vector. These studies have been motivated the fact that these
two objects appear often together in the expressions of different statistics, e.g., Hotelling
T 2-statistic, principal components, discriminant function and weights of portfolio under
multivariate normality.

Let us summarize the previous studies on functions of a Wishart matrix and a normal
vector. Bodnar and Okhrin (2011) derived the density functions of the product of an inverse
Wishart matrix and a normal vector, in addition, discussed applications to portfolio theory
and discriminant analysis. Bodnar et al. (2013) presented the stochastic representations and
the density functions of the product of a Wishart matrix and a normal vector, furthermore,
found an approximation for the density functions, which is based on a Taylor series
expansion. Bodnar et al. (2015) investigated the distributional properties of the product
of a singular Wishart matrix and a normal vector. Kotsuiba and Mazur (2016) extended
the results of Bodnar and Okhrin (2011) by deriving the asymptotic and approximate
density functions of the product of an inverse Wishart matrix and a normal vector. Bodnar
et al. (2019) derived the stochastic representations of the product of a singular Wishart
matrix and a singular normal vector, in addition, proved the asymptotic normality of the
product under the high-dimensional asymptotic regime. Javed et al. (2021) derived the
higher order moments of the product of an inverse Wishart matrix and a normal vector.

Although previous researches on functions have been assumed that a Wishart matrix
and a normal vector are independent, we consider the situation in which a Wishart matrix
and a normal vector are dependent. This situation can be considered in a Bayesian frame-
work. In portfolio theory, for example, the weights of tangent portfolio and of multi-period
optimal portfolio are expressed as the product of a Wishart matrix and a normal vector,
which are dependently distributed. Bauder and his co-authors (2018, 2020) derived the
stochastic representations for the weights of tangent portfolio and of multi-period optimal
portfolio, respectively. In addition, they provided the first two moments and established
asymptotic normality of the product by using the stochastic representations. Although
the derived stochastic representations are computationally efficient, those representations
could not be mathematically tractable as Bauder et al. (2020) pointed out themselves. This
can cause difficulties in understanding some distributional properties of the product. The
density function, for example, has not been provided and estimated by using kernel method.
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Therefore the objectives of this research are: 1. to obtain more simple stochastic repre-
sentation, 2. investigate some distributional properties including the explicit expression of
the density function.

The rest of this paper is structured as follows. In section 3.2, we derive the stochastic
representations of the product of a Wishart matrix and a normal vector, which are de-
pendently distributed. It is applied to derive the density function and first four moments
in Corollary 3.2 and 3.3. It is found that the distribution of the product is closed under
conditioning, marginalization, and affine transformations. In addition, the approximation
for the distribution of the product is discussed. The results of numerical studies are given
in Section 3.3, while Section 3.4 summarizes the paper. In the appendix, we give the new
stochastic representations of some functions which appear in the efficient frontier. These
results improve the computational efficiency of the existing stochastic representations
given by Bauder et al. (2019).

3.2 Main results
In previous studies attempts have been made to establish stochastic representations of the
product of a Wishart matrix and a normal vector. In most cases, the obtained stochastic
representations for the product are expressed in terms of the well-known distributions, such
as χ2 and normal distributions. These representations allow us to access the density func-
tion, moments and limiting distribution. In addition, the stochastic representation often
makes the simulation procedure more computationally efficient (cf. Bodnar and Okhrin,
2011; Bodnar and his co-authors, 2013, 2015, 2019). In this section, therefore, we study
the stochastic representation for Az where A ∼ Wk(n,Σ) and z|A ∼ Nk(µ,A−1/κ).

Let L be an p × k constant matrix with rankL = p < k. Bauder and his co-
authors (2018, 2020) presented the stochastic representation for LAz as

LAz
d
= ηLζ +

√
η(εLΥL′ − Lζζ ′L′)1/2z0, (35)

ε = ε(Q,U) = µ′Σµ+
2
√
n− k + 1√

κ

√
kQ

n+ 1 + k(Q− 1)
µ′Σ1/2U

+
1

κ

kQ

n+ 1 + k(Q− 1)
− kQ

n+ 1 + k(Q− 1)
(µ′Σ1/2U)2,

ζ = ζ(Q,U) = Σµ+

√
n− k + 1√

κ

√
kQ

n+ 1 + k(Q− 1)
Σ1/2U

− kQ

n+ 1 + k(Q− 1)
Σ1/2UU′Σ1/2µ

Υ = Υ(Q,U) = Σ− kQ

n+ 1 + k(Q− 1)
Σ1/2UU′Σ1/2,
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where η ∼ χ2
n+1, z0 ∼ Np(0, Ip), Q ∼ F (k, n− k+1) and U is uniformly distributed on

the unit sphere in Rk; moreover, they are mutually independent.
The stochastic representation (35) simplifies the simulation procedures since random

sampling is required only for the p+ k + 2 random variables. Without the representation
(35), we would have to simulate k + k(k + 1)/2 random variables. Although the uniform
distribution on a unit sphere inRk is not a standard distribution in many statistical packages,
the realizations of U can easily be obtained from the k-dimensional standard normal vector
Z by using U = Z/

√
Z′Z.

In the proof of the stochastic representation (35), the normal vector z was fixed, which
results in A|z ∼ Wk(n + 1, [κ(z− µ)(z− µ)′ +Σ−1]−1) and z ∼ tk(n− k + 1,µ,Σ),
where tk(m,θ,T) denote the m-dimensional t-distribution with m degrees of freedom,
location vector θ, and dispersion matrix T. They applied the approach which is detailed
in Bodnar and his co-authors (2013, 2015, 2019) to this setting. While, we fix the Wishart
matrix A to obtain the novel stochastic representation of Az as follows:

Theorem 3.1. Suppose A ∼ Wk(n,Σ) with Σ > 0 and z|A ∼ Nk(µ,A−1/κ), κ > 0.
Let δ = Σµ, Ω = (κ−1 +µ′Σµ)Σ−Σµµ′Σ. Then, the stochastic representation of Az

are given by

Az
d
= Wδ +

√
WΩ1/2Z (36)

where W ∼ χ2
n and Z ∼ Nk(0, Ik); they are independent.

Proof. The conditional distribution of l′Az given A is N(l′Aµ, l′Al/κ). This implies
the following stochastic representation:

l′Az
d
=

√
l′Alz0 + l′Aµ with z0 ∼ N(0, 1/κ). (37)

Let L̃ = (µ, l)′. If we assume rank(L̃) = 2, then L̃AL̃′ ∼ W2(n,H), where

L̃AL̃′ =

(
µ′Aµ µ′Al

l′Aµ l′Al

)
,H =

(
µ′Σµ µ′Σl

l′Σµ l′Σl

)
.

Using Theorem 3.2.10 of Muirhead (1982),

l′Aµ|l′Al ∼ N(l′All′Σµ/l′Σl, h11·2l
′Al), (38)

where h11·2 = µ′Σµ− (l′Σµ)2/l′Σl. From (37) and (38), the conditional distribution of
the right side of (37) given l′Al is

N(l′All′Σµ/l′Σl, (κ−1 + h11·2)l
′Al).
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Since W = l′Al/l′Σl is χ2
n, the stochastic representation of l′Az is

l′Az
d
= cW l′Σµ/c+

√
cWu0

where c = (κ−1 + µ′Σµ)l′Σl− (l′Σµ)2 and u0 ∼ N(0, 1).
From the Definition 2.1 of Barndorff-Nielsen et al. (1982)1 , the distribution of l′Az

is normal variance-mean mixture with position 0, drift l′Σµ/c, structure matrix 1 and
mixing distribution F which is the distribution function of cW . On the basis of (2.2) of
Barndorff-Nielsen et al. (1982), the characteristic function of l′Az is given by

E(exp(iθl′Az)) =

[
1− 2c

(
iθ
l′Σµ

c
+
θ2

2

)]−n/2

= (1− 2iθl′Σµ+ cθ2)−n/2. (39)

If we put θ = 1 and Ω = (κ−1 + µ′Σµ)Σ − Σµµ′Σ in (39), then the characteristic
function of Az is written as

E(exp(il′Az)) = [1− 2(iθl′Σµ+ l′Ωl/2)]−n/2

=

[
1− 2|Ω|1/k

(
il′

Σµ

|Ω|1/k − l′
Ω

|Ω|1/k l
)]−n/2

. (40)

(40) implies that Az follows the k-dimensional normal variance-mean mixture with po-
sition 0, drift Σµ/|Ω|1/k, structure matrix Ω/|Ω|1/k and mixing distribution G which is
the distribution function of |Ω|1/kW .

The proof is completed.

As pointed out in the proof of Theorem 3.1, the distribution of Az is a normal
variance-mean mixture with position 0, drift (Ω/|Ω|1/k)Ω−1δ, structure matrix Ω/|Ω|1/k

and mixing distribution G which is the distribution function of |Ω|1/kW . According
to Barndorff-Nielsen et al. (1982), the class of r-dimensional generalized hyperbolic
distributions are obtained as r-dimensional normal variance-mean mixtures with position
µ, drift ∆β, and structure matrix ∆ if the mixing distribution is the generalized inverse
Gaussian distribution G(λ, γ2,ψ2), where ψ2 = α2 − β′∆β with probability density
function

f(u) =
(ψ/γ)λ

2Kλ(ψγ)
uλ−1 exp

{
−1

2
(γ2u−1 + ψ2u)

}
,

where u > 0, Kλ is the modified Bessel function of the third kind, and

γ ≥ 0,α2 > β′∆β for λ > 0,

1In Definition 2.1 of Barndorff-Nielsen et al. (1982), the row vector was used. In this paper, the row
vector in their original definition is deemed to be replaced the column vector.
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γ > 0,α2 > β′∆β for λ = 0,

γ > 0,α2 ≥ β′∆β for λ < 0.

Since χ2 distribution is a special case of the generalized inverse Gaussian distribution,
the distribution of Az belongs to the the class of k-dimensional generalized hyperbolic
distributions. The properties of the generalized hyperbolic distributions are well studied
by Blæsild (1981), Blæsild and Jensen (1981), Barndorff-Nielsen et al. (1982), among
others. In particular, the generalized hyperbolic distribution has the property of closure
under affine transformation, marginalization and conditioning, these properties allow us
to obtain

LAz
d
= WLδ +

√
WLΩL′Z (41)

where δ = Σµ, Ω = (κ−1 + µ′Σµ)Σ−Σµµ′Σ, L is a constant matrix with rankL =

p ≤ k, W ∼ χ2
n and Z ∼ Np(0, Ik); they are independent. It is noted that the rank of

L is allowed to be equal to the dimension. this admit that we can investigate the joint
distribution, although most of existing literature on the product have studied marginal
distribution. In contrast to the stochastic representation (35), the computational efficiency
of the stochastic representation (41) is considerably high because we need to simulate p+1

random variables ; χ2
n and p-dimensional standard normal vector which are independent.

In particular, if we put p = 1 in (41), then the stochastic representation becomes,

l′Az
d
= W l′Σµ+

√
cWu0 (42)

where c = (κ−1 + µ′Σµ)l′Σl − (l′Σµ)2, W ∼ χ2
n and u0 ∼ N(0, 1). In addition, W

and u0 are independent. The stochastic representation (42) indicates that it is enough to
simulate only two univariate random variables χ2

n and standard normal variable for any
dimension k. This result speeds up the simulation significantly, especially for larger values
of k.

As pointed out in Section 3.1, the distribution of Az discussed here arises in the
distribution of the optimal portfolio weights from Bayesian perspective. Bauder and his
co-authors (2018, 2020) estimated the posterior density of the optimal portfolio weights
by using Kernel method, while Javed et al. (2021) derived the higher order moments of the
sampling distribution of the weights. As mentioned above, the distribution of Az belongs
to the class of generalized hyperbolic distributions. This enables us to use the analytical
formulae of the density function and the first four moments for generalized hyperbolic
(GH) distributions, which are derived in Blæsild (1981), Blæsild and Jensen (1981), and
Barndorff-Nielsen et al. (1982).
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Corollary 3.2. Assume the same conditions as Theorem 3.1. The density function of Az

is given by

fAz(x) =
1

(2π)
k
2Γ
(
n
2

)
2

n
2−1

(
x′Ω−1x

1 + δδδ′Ω−1δδδ

)n−k
4

exp(δδδ′Ω−1x)

×Kn−k
2

([
(1 + δδδ′Ω−1δδδ)x′Ω−1x

]1/2) (43)

The density function generally involves the modified Bessel function of the third kind,
which is one of the solutions of the following differential equation;

z2
d2w

dz2
+ z

dw

dz
− (z2 + v2)w = 0,

where z is an arbitrary complex number and v is an arbitrary real number (Abramowitz and
Stegun, 1965). In particular, if the index of the modified Bessel function is half-integer,
then the following finite representations;

Ki+1/2(x) =

√
π

2x
exp(−x)

i∑

k=0

(k + i)!

k!(i− k)!
(2x)−k,

K±1/2(x) =

√
π

2x
exp(−x)

are available. If n−k is odd in (43), then we can get the finite representation of the density
function.

In the next corollary, we provide the expression of the mean, variance, skewness and
kurtosis of l′Az.

Corollary 3.3. Assume the same conditions as Theorem 3.1. Let l′ be a constant 1 × k

vector. Then, the mean, variance, skewness and kurtosis of l′Az are given by

E[l′Az] = nb,

V[l′Az] = n
[
b2 + a

(
d+ κ−1

)]
,

Skewness[l′Az] =
2b [b2 + 3a (d+ κ−1)]

√
n [b2 + a (d+ κ−1)]3/2

,

Kurtosis[l′Az] = 3

(
1 +

2

n

)
+

24ab2 (d+ κ−1)

n [b2 + a (d+ κ−1)]2
,

where a = l′Σl, b = l′Σµ and d = µ′Σµ.

In general, the distribution of l′Az is skewed and heavy tailed. However, if we put
µ = 0, then the skewness is 0 and the kurtosis depends only on the degrees of freedom n.
Since the second term of the kurtosis is always positive, the kurtosis with µ = 0 is less
than the kurtosis with µ != 0.
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Although Bauder and his co-authors (2018, 2020) have established the asymptotic
normality of the product, the asymptotic normality for moderate sample size should
not be expected to provide accurate approximations for the distribution of l′Az. In
addition, it may be difficult to evaluate the cumulative distribution function of l′Az

because the density function generally involves the special function. To evaluate and
approximate the cumulative distribution function of l′Az, we apply Lemma 1 of Yonenaga
and Suzukawa (2021) to (42) and we can get

P (Sn ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + o(n−1), (44)

where

Sn =
√
n
l′Az/n− l′Σµ√
2(l′Σµ)2 + c

,

p1(x) = −1

6
κ̃3(x

2 − 1), p2(x) = −x

{
1

24
κ̃4(x

2 − 3) +
1

72
κ̃23(x

4 − 10x2 + 15)

}

κ̃3 =
2l′Σµ[3c+ 4(l′Σµ)2]

[2(l′Σµ)2 + c]3/2
, κ̃4 =

6[c2 + 8c(l′Σµ)2 + 8(l′Σµ)4]

[2(l′Σµ)2 + c]2

We can observe from (44) that if µ = 0, the term of order n−s/2 in the expansion is
vanished, where s is odd. This implies that if we have µ = 0, the convergent to standard
normal distribution become fast.

Remark 3.4. According to Fung and Seneta (2011), the distribution of the product belongs
to the class of multivariate skewed variance-gamma (VG) distributions, which is obtained
when the mixture distribution of the GH distributions is a gamma distributed.

Remark 3.5. As mentioned above, the obtained stochastic representation implies that
the distribution of Az belongs to the class of GH distributions. This fact gives us an
insight of the behavior of the tail of the bivariate distribution of the product. Fung and
Seneta (2011) showed that the bivariate GH distribution with the correlation ρ ∈ (−1, 1)

is asymptotically independent in the lower tail. Furthermore, let β be a two dimensional
constant vector, and assume that its components are equal to θ and L(u) be the slowing
varying function which satisfies

lim
u→0+

L(λu)

L(u)
= 1,

where λ is an arbitrary positive real number (Seneta, 1976).
If X is GH distribution, i.e.

X
d
= Wβ +

√
WZ,
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where W ∼ GIG(λ, δ,κ) with κ > 0, Z ∼ N2(0, R), and Z is independent of W , and R

is a correlation matrix with the component ρ, then Fung and Seneta (2021) derived

C(u, u) ∼ uτL(u),

τ =
(1 + δ2)1/2[((1 + δ2)θ2 + κ2)1/2 + (1 + δ2)1/2θ]

(θ2 + κ2)1/2 + θ
,

L(u) ∼ K(ρ, θ,λ, δ,κ)(| log u|)(λ−1)(1−τ)−1/2, u → 0+,

where K(ρ, θ,λ, δ,κ) is a specific function of all the parameters, and C(u, v) is the copula
of X. As for the copula, readers may refer to Nelsen (2006).

3.3 Simulation
In the foregoing section, we have derived the stochastic representation of Az, which is
different from the existing stochastic representation given by (35). In this section, we
investigate whether the stochastic representation (41) yields the same distribution as the
stochastic representation (35). The statistical software R is used to create all graphs and the
seed value is set.seed(1). The simulation is made for p = 1. We use two data sets in the
simulation. The first one is obtained by using the stochastic representation (35), whereas
the elements from the second data are obtained by using the stochastic representation (41).
Each of the simulated data consists of B = 3000 independent realizations. The first data
set is abbreviated by data 1 and it is obtained in the following way:

(a) generate independently η ∼ χ2
n+1, z0 ∼ N(0, 1), Q ∼ F (k, n − k + 1) and

Z ∼ N2(0, I2) with U = Z/
√
Z′Z;

(b) compute ε, ζ and Υ, respectively;

(c) put the values obtained in step (b) into the stochastic representation

l′Az
d
= ηl′ζ +

√
η(εl′Υl− l′ζζ ′l)1/2z0;

(d) repeat step (a)-(c) B times.

The second data set is denoted by data 2 and the corresponding algorithm is given next:

(a) generate independently W ∼ χ2
n and u0 ∼ N(0, 1);

(b) compute the value

l′Az
d
= W l′Σµ+

√
(κ−1 + µ′Σµ)l′Σl− (l′Σµ)2

√
Wu0;

(c) repeat step (a)-(b) B times.
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Figure 5: The both figures show that Q-Q plot of data 1 and data 2 where these data sets
are drawn from the stochastic representation (35) and (41), respectively. The left panel
deals with A ∼ W2(20, I2), z ∼ N2((1, 0)′,A−1) and l′ = (1,−1), whereas the right
panel A ∼ W5(20, I5), z ∼ N5((1, 0, 0, 0, 0)′,A−1) and l′ = (1,−1, 1,−1, 1). The slope
of the real line in both figures is 1.

The Q-Q plot for A ∼ W2(20, I2), z ∼ N2((1, 0)′,A−1) and l′ = (1,−1) is
presented in Figure 5a, and for A ∼ W5(20, I5), z ∼ N5((1, 0, 0, 0, 0)′,A−1) and
l′ = (1,−1, 1,−1, 1) in Figure 5b. We can observe from Figure 5 that quantiles of
data 1 almost coincide with those of data 2, which means two data sets are drawn from the
same distribution.

3.4 Summary
Previous researches on functions of a Wishart matrix and a normal vector have assumed the
independence of a Wishart matrix and a normal vector. However, assumingA ∼ Wk(n,Σ)

with Σ > 0 and z|A ∼ Nk(µ,A−1/κ) appears natural from the viewpoint of Bayesian
statistics. Bauder and his co-authors (2018, 2020) derived the stochastic representations
of the product, which is computationally efficient. In addition, they provided the first two
moments and established asymptotic normality of the product by using the stochastic rep-
resentations. Since their stochastic representations could not be mathematically tractable,
we derive the novel stochastic representation of the product in Theorem 3.1. The derived
stochastic representation is very simple and highly computationally efficient compared
with the existing stochastic representation. In addition, it turns out that the distribution of
Az is closed under affine transformation, marginalization and conditioning. In Corollary
3.2 and 3.3, the explicit expression of the density function and first four moments of the
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product are provided. We also discuss the asymptotic expansion for l′Az. The results
of the present study will contribute to develop the distributional properties of the product
of a Wishart matrix and a normal vector which are dependent, and improve on existing
stochastic representation in computational efficiency of the stochastic representation of
the product.

Appendix
As mentioned in section4.2, we comment on the results obtained by Bauder et al. (2019).
By taking the approach adopted in this section, we can improve the computational effi-
ciency of stochastic representations given in Bauder et al. (2019). This is outside the scope
of this paper, but we include the results and its proofs due to its importance.

The three parameters of the efficient frontier can be expressed as follows:

RGMV =
1′Az

1′A1
,

VGMV =
1

1′A1
,

s = z′Az− (1′Az)2

1′A1
,

where A ∼ Wk(n,Σ) and z ∼ Nk(µ,A−1/κ).

Theorem 3.6. Let A ∼ Wk(n,Σ) with Σ > 0 and z ∼ Nk(µ,A−1/κ). The stochastic
representation of RGMV , VGMV and s are given by

VGMV
d
=

1

1′Σ1χ2
n

,

RGMV
d
=

1′Σµ

1′Σ1
+

√
κ−1 + σ11·2
n1′Σ1

tn,

s
d
=
χ2
k−1(κσ11·2χ

2
n−1)

κ
,

where σ11·2 = µ′Σµ−(1′Σµ)2/1′Σ1. In addition, χ2
n, χ2

n(δ
2), and tn denote the random

variables which are distributed asχ2 distribution with degrees of freedom n, noncentralχ2

distribution with degrees of freedom n and non centrality parameter δ2, and t distribution
with n degrees of freedom, respectively.

Proof. Firstly, we consider the distribution of VGMV , which is the variance of the GMV
portfolio. This immediately follows from Theorem 3.2.8 of Muirhead (1982) that

VGMV
d
=

1

1′Σ1ξ
,

where ξ ∼ χ2
n.
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Next, we consider the distribution of RGMV , which is the expected return of the GMV
portfolio. Dividing both sides of (37) with l = 1 by 1′A1, we obtain

1′Az

1′A1
d
=

z0√
1′A1

+
1′Aµ

1′A1
,

where z0 ∼ N(0, 1). From (38), we get

1′Aµ

1′A1
|1′A1 ∼ N

(
1′Σµ

1′Σ1
,
σ11·2
1′A1

)
, (45)

where σ11·2 = µ′Σµ− (1′Σµ)2/1′Σ1.
Therefore, the conditional distribution of 1′Az/1′A1 given 1′A1 is

N

(
1′Σµ

1′Σ1
,
κ−1 + σ11·2

1′A1

)
.

Since W = 1′A1/1′Σ1 is χ2
n, the stochastic representation of 1′Az/1′A1 is

1′Az

1′A1
d
=

1′Σµ

1′Σ1
+

√
κ−1 + σ11·2
n1′Σ1

u0√
W/n

d
=

1′Σµ

1′Σ1
+

√
κ−1 + σ11·2
n1′Σ1

tn,

where tn is a t-distribution with n degrees of freedom.
Finally, we consider the distribution of s which is a slope parameter of the efficient

frontier. If we fix A,and put
√
κA1/2z = t in the equation of s, then

s =
1

κ
t′
(
Ik −

A1/211′A1/2

1′A1

)
t =

t′Bt

κ
,

where t|A ∼ Nk(
√
κA1/2µ, Ik).

Since we can confirm the following identity holds:

(i) tr(B) = k − 1, κµ′A1/2BA1/2µ = κ

(
µ′Aµ− µ′A11′Aµ

1′A1

)
,

(ii) B2 = B,

(iii) κµ′A1/2B2A1/2µ = κµ′A1/2BA1/2µ,

(iv) µ′A1/2B2 = µ′A1/2B,

it follows from Theorem 5.1.3 of Mathai and Provost (1992) that the conditional distribution
of s given A is χ2

k−1(δ
2)/κ, where

δ2 = κ

(
µ′Aµ− µ′A11′Aµ

1′A1

)
.

From Theorem 3.2.10 of Muirhead, we can obtain δ2 ∼ κσ11·2χ2
n−1.
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From the stochastic representations we have derived, we can see that the variance and
expected return of the GMV portfolio are given by one random variable, and the slope
parameter of the efficient frontier is given by two random variables. This is extremely
computationally efficient compared to Theorem 1 given in Bauder et al. (2019).
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4 Bayesian estimation for misclassification rate in linear
discriminant analysis

4.1 Introduction
In this section, we consider discriminant analysis in the case of two multivariate nor-
mal populations with different means and common covariance matrices, namely, π1 :

Np(µ1,Σ) and π2 : Np(µ2,Σ) where µ1 is the vector of means of the i-th population,
i = 1, 2, and Σ > 0 is the matrix of variances and covariances of each population.

Suppose an individual y is an observation from either π1 or π2. Our classifications
rule is to classify y to π1 if

U = (µ1 − µ2)
′Σ−1

{
y − 1

2
(µ1 + µ2)

}
≥ x

is used as the best criterion of discrimination when we wish to classify an observation y

as coming from π1 to π2. If q1 and q2 are a priori probabilities of drawing an observation
from π1 and π2, respectively, and if the cost of misclassifying an observation from π1 as
from π2 is C(2|1) and an observation from π2 as from π1 is C(1|2), then the x is given
by log(q2C(1|2)/q1C(2|1)). If q1 = q2 and C(1|2) = C(2|1), then the cut-off point x
reduces to 0.

In discriminant analysis, it is very important to evaluate misclassification rates. There
are two misclassification rates: the optimal error rate and the actual error rate. If µ1, µ2

and Σ are fixed and y ∈ π1, the optimal error rate is defined as

ε1 = ε1(µ1,µ2,Σ) = Pr[U < x|µ1,µ2,Σ,y ∈ π1] = Φ

(
x−∆2/2

∆

)
, (46)

where Φ(·) denotes the cumulative distribution function of the standard normal distribu-
tion, and ∆2 denotes the square Mahalanobis distance between π1 and π2, which is defined
by ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2).

In most applications the population discriminant U is not known, and it is neces-
sary to estimate them. Suppose we collect two mutually independent random samples
x11, · · · ,x1N1 and x21, · · · ,x2N2 drawn from π1 and π2, respectively. Our estimate of
µ1 is x̄1 =

∑N1

α=1 x1α/N1, of µ2 is x̄2 =
∑N2

α=1 x2α/N2, and of Σ is S defined by
nS =

∑N1

α=1(x1α− x̄1)(x1α− x̄1)′+
∑N2

α=1(x2α− x̄2)(x2α− x̄2)′ with n = N1+N2− 2.
We substitute these estimates for the parameters in the population discriminant U to obtain

W = (x̄1 − x̄2)
′S−1

{
y − 1

2
(x̄1 + x̄2)

}
,

Although we assume Ni ≥ p to take the inverse of S, the opposite case, i.e. Ni < p,
should deal with the inverse of the singular Wishart matrix. The distributional properties
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of (inverse) singular Wishart distribution are well studied by Díaz-García et al. (1997),
Srivastava (2003), Bodnar and Okhrin (2008), Bodnar and his co-authors (2015, 2016,
2019), among others. In particular, Bodnar and Okhrin (2008), and Bodnar et al. (2016)
discussed the distribution of the generalized inverse of the singular Wishart matrix in
detail.

We refer to the misclassification rate associated withW as the actual error rate. Since it
is very important to evaluate the misclassification rate computed based on the distribution
of W , we need the exact distribution of W . However, according to Anderson (2003),
the exact distribution of W is extremely complicated and very difficult to calculate. As
a result, a great deal of attention has been paid to deriving an asymptotic expansion for
the distribution function of W . For example, Okamoto (1963) obtained the asymptotic
expansion of the distribution function of W to terms of order n−2, and Siotani and
Wang (1977) to terms ofn−3, wheren = N1+N2−2. From the viewpoint of computational
statistics, Bowker (1961) derived the stochastic representation of W in terms of elements
of a p-dimensional normal vector and those of a 2-dimensional Wishart matrix. In recent
years, Bodnar et al. (2020) established the stochastic representation of W with some
univariate random variables and presented the computation routine of the actual error rate.
In addition, they proved asymptotic normality under the double regime asymptotics.

In contrast to frameworks of sampling distribution theory, it is often the case that an
explicit expression of the Bayes estimator of the actual error rate is available in Bayesian
linear discriminant analysis. The conditional actual error rate is given by

β1 = β1(µ1,µ2,Σ) = Pr[W < x|µ1,µ2,Σ
−1,y ∈ π1] = Φ(θ1),

where

θ1 =
[(x̄1 − x̄2)′S−1 {(x̄1 + x̄2)/2− µ1}+ x]√

(x̄1 − x̄2)′S−1ΣS−1(x̄1 − x̄2)
.

It is noted that β1 is the function of the random variables µ1, µ2 and Σ. Under the Jeffreys
prior for µ1, µ2 and Σ−1 and normal sampling model, Geisser (1967) showed that the
Bayes estimator of β1, i.e., the posterior mean of β1, is given by

Pr

[
tn+1−p ≤

x−Q/2√
n(N1 + 1)Q/(n+ 1− p)N1

]
,

where Q = (x̄1 − x̄2)′S−1(x̄1 − x̄2), n = N1 + N2 − 2 and tn+1−p is the t-distributed
random variable with degrees of freedom n+1−p. Dalton and Dougherty (2011a, 2011b)
proposed the minimum mean square error (MMSE) estimation theory to estimate the true
error associated with the sample discriminant function conditioned on training data sets.
In addition, they applied the MMSE estimation theory to estimate the misclassification
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rate associated with a linear discriminant a′y+ b, where a is an arbitrary constant vector,
while b is an arbitrary constant. It is noted that the proposed estimator of the actual error
has the same functional form as the classical Bayes estimator (cf. Lehmann and Casella,
1998).

Whereas many studies have considered the estimation of the actual error rate, few
have explored the estimation of the optimal error rate ε1 defined by (46). According to
Geisser (1982), the optimal error rate is useful as a criterion for the selection of variables
used for discrimination. If the estimate of the optimal error rate were larger than necessary,
one would search either for additional variables or another set with which to diminish the
rate. Therefore, the purpose of this study is to consider the Bayesian estimation of ε1. This
remainder of this paper is structured as follows. In section 4.2, we present the posterior
distributions forµ1,µ2 andΣ−1 under conjugate and diffuse priors. In section 4.3, we give
the expression of the posterior predictive density and the first four moments of the linear
discriminant U under both the priors. Using the expression of the posterior predictive
density of U , we derive the Bayes estimator of ε1. Although the expression is somewhat
complicated, there are some cases in which the expression of the estimator is simply
expressed. Moreover, we suggest approximations for the Bayes estimator of ε1. In section
4.4, based on simulation studies, we investigate the accuracy of the approximations for the
Bayes estimator of ε1. Through the simulation results, we document the good performance
of the suggested approximations. In section 4.5, we apply the results to estimate the optimal
error rate associated with Fisher’s Iris dataset. Section 4.6 contains our conclusions. All
proofs are presented in the Appendix.

4.2 Preliminaries
The main purpose of this work is the Bayesian estimation of ε1. In Bayesian estimation,
we must choose prior distributions for µ1, µ2 and Σ−1. As prior distributions for µ1,
µ2 and Σ−1, the Jeffreys prior and normal-inverse-Wishart prior (NIW prior) have been
employed in the literature of Bayesian discrimination (Geisser, 1967, 1982; Dalton and
Dougherty, 2011). The Jeffreys prior is given by

πd(µ1,µ2,Σ
−1) ∝ |Σ|(p+1)/2, (47)

and the NIW prior assumes a normal distribution for µ1 and µ2 and a Wishart distribution
for Σ−1;

µ1|Σ ∼ Np (ξ1,Σ/k1) , µ2|Σ ∼ Np (ξ2,Σ/k2) , Σ
−1 ∼ Wp(m0,Λ

−1
0 ), (48)

where ξi is a prior mean, ki is a positive real number, m0 is a positive integer with m0 ≥ p,
and Λ0 is a known prior matrix of Σ. Moreover, µ1 and µ2 (conditional on Σ) are condi-
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tionally independent. Let x11, · · · ,x1N1 and x21, · · · ,x2N2 be two independent samples
from the multivariate normal distribution that consist of independent and identically dis-
tributed random vectors with x1i ∼ Np(µ1,Σ) for i = 1, · · · , N1 and x2i ∼ Np(µ2,Σ)

for i = 1, · · · , N2. Let X1 = (x11, · · · ,x1N1) and X2 = (x21, · · · ,x2N2) be observation
matrices.

Under the Jeffreys prior, the posterior distributions for µ1, µ2 and Σ−1 are given by

µ1|Σ,X1 ∼ Np (x̄1,Σ/N1) , µ2|Σ,X2 ∼ Np (x̄2,Σ/N2) ,

Σ−1|X1,X2 ∼ Wp(n, (nS)
−1),

where 1n denotes the vector of ones,

x̄1 =
1′
N1
X1

N1
, x̄2 =

1′
N2
X2

N2
, n = N1 +N2 − 2,

(N1 − 1)S1 =
N1∑

j=1

(x1j − x̄1)(x1j − x̄1)
′, (N2 − 1)S2 =

N2∑

j=1

(x2j − x̄2)(x2j − x̄2)
′,

nS = (N1 − 1)S1 + (N2 − 1)S2.

Under the NIW prior,

µ1|Σ,X1 ∼ Np

(
ω1,

Σ

k1 +N1

)
, µ2|Σ,X2 ∼ Np

(
ω2,

Σ

k2 +N2

)
,

Σ−1|X1,X2 ∼ Wp(m,Λ−1),

where

ω1 =
k1

k1 +N1
ξ1 +

N1

k1 +N1
x̄1, ω2 =

k2
k2 +N2

ξ2 +
N2

k2 +N2
x̄2, m = m0 +N1 +N2,

Λ = Λ0 + nS+
k1N1

k1 +N1
(x̄1 − ξ1)(x̄1 − ξ1)

′ +
k2N2

k2 +N2
(x̄2 − ξ2)(x̄2 − ξ2)

′.

4.3 Main results
4.3.1 Exact expressions of the Bayes estimator of the optimal error rate

We consider the Bayesian estimation of ε1. Let P (µ1,µ2,Σ−1|X1,X2) be the joint
posterior distribution for µ1, µ2 and Σ−1, f(u|µ1,µ2,Σ−1,y ∈ π1) be the conditional
normal density of U with the mean ∆2/2 and variance ∆2, and f(u|y ∈ π1) be the
posterior predictive density of U . The Bayes estimator of ε1 is then computed as

E(ε1) =

∫

µ1,µ2,Σ−1

Φ

(
x−∆2/2

∆

)
P (µ1,µ2,Σ

−1|X1,X2)dµ1dµ2dΣ
−1

=

∫ x

−∞

∫

µ1,µ2,Σ−1

f(u|µ1,µ2,Σ
−1,y ∈ π1)P (µ1,µ2,Σ

−1|X1,X2)dµ1dµ2dΣ
−1du
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=

∫ x

−∞
f(u|y ∈ π1)du. (49)

Although Geisser (1967) discussed the distribution of U under the Jeffreys prior given
by (47), the posterior predictive density of U has not been derived explicitly. In the
following theorem, we present the posterior predictive density of U , which is expressed
as the one-dimensional integral involving confluent hypergeometric function defined as

1F1 (a; b; x) =
∞∑

k=0

(a)k
(b)k

xk

k!
,

where (a)k and (b)k are Pochhammer symbols. Let φ(·) denote the standard normal
density and gp(v) stand for the χ2-density with p degrees of freedom.

Theorem 4.1. Assume a new observation y is from π1.
(a) Under the Jeffreys prior given by (47), the posterior predictive density of U is given by

f(u|y ∈ π1) =

(
nc

nc+Q

)n/2 ∫ ∞

0

1√
cv
φ

(
u− cv/2√

cv

)
gp(v)1F1

(
n

2
;
p

2
;

Q

2(nc+Q)
v

)
dv,

where n = N1 +N2 − 2, c = N−1
1 +N−1

2 and Q = (x̄1 − x̄2)′S−1(x̄1 − x̄2).
(b) Under the NIW prior given by (48), the posterior predictive density of U can be
obtained by replacing n with m = N1 + N2 +m0, Q with md, and c with c̃ in Theorem
4.1 (a), where c̃ = (k1 +N1)−1 + (k2 +N2)−1 and d = (ω1 − ω2)′Λ−1(ω1 − ω2).

To understand the characteristics of the distribution of U , it is important to compute
the moments of U . In particular, the skewness and kurtosis play an important role in
measuring the deviation from a normal distribution. Geisser (1967) derived the mean and
variance of U under the Jeffreys prior. In Theorem 4.2, we provide not only the mean and
variance but also the skewness and kurtosis of U under both the priors. As will be seen
later, the mean and variance of U are needed to evaluate the asymptotic expansion for the
distribution function of U which is given in Theorem 4.7. In addition, we can assess the
adequacy of a normal approximation for the distribution of U by computing skewness and
kurtosis of U .

Theorem 4.2. Assume the same conditions as Theorem 4.1.
(a) Under the Jeffreys prior, posterior predictive mean, variance, skewness and kurtosis
of U are given by

E[U ] =
Q+ cp

2
,

V[U ] =
1

2

[
Q2

n
+ 2(c+ 1)Q+ c(c+ 2)p

]
,
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Skewness[U ] =
1

V(U)3/2

[
Q3

n2
+ 3(c+ 1)

Q2

n
+ 3c(c+ 2)Q+ c2(c+ 3)p

]
,

Kurtosis[U ] =
3

V(U)2

[
Q4

n3
+ 4(c+ 1)

Q3

n2
+ 2(3c2 + 6c+ 1)

Q2

n

+ 4c(c2 + 3c+ 1)Q+ c2(c2 + 4c+ 2)p

]
+3,

where n = N1 +N2 − 2, c = N−1
1 +N−1

2 , and Q = (x̄1 − x̄2)′S−1(x̄1 − x̄2).
(b) Under the NIW prior, posterior predictive mean, variance, skewness and kurtosis of
U can be obtained by replacing n with m = N1 +N2 +m0, Q with md, and c with c̃ in
Theorem 4.2 (a), where c̃ = (k1+N1)−1+(k2+N2)−1 and d = (ω1−ω2)′Λ−1(ω1−ω2).

Let Ks(x) be the modified Bessel function of the second kind, which is one of the
solutions of the following differential equation;

z2
d2w

dz2
+ z

dw

dz
− (z2 + v2)w = 0,

where z is an arbitrary complex number and v is an arbitrary real number (Abramowitz &
Stegun, 1965). In addition, I(x; a, b) is the incomplete beta function defined as

I(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1dt,

where a > 0 and b > 0. In particular, Dalton and Dougherty (2011) derived the following
finite representation: I(1; 1/2;Z/2) = 1 for any positive integer Z and

I

(
x;

1

2
;
Z

2

)
=






(2/π) sin−1(
√
x) Z = 1,

(2/π) sin−1(
√
x)

+(2/π)
√
x
∑(Z−1)/2

k=1
(2k−2)!!
(2k−1)!!(1− x)k−1/2 Z > 1 odd,

√
x
∑(Z−2)/2

k=0
(2k−1)!!
(2k)!! (1− x)k Z > 1 even

for any real number 0 ≤ x < 1. In Theorem 4.3, we present the exact cumulative
distribution function of U (exact CDF of U ) under both the priors. As in (49), the exact
CDF of U is identical to the Bayes estimator of ε1.

Theorem 4.3. Assume the same conditions as Theorem 4.1.
(a) Under the Jeffreys prior, the exact CDF of U is given by

F (x) = Pr(U ≤ x) =
1

2

(
1 +

Q

nc

) ∞∑

k=0

Pr(K = k)A(k, x),

where K is a negative binomial random variable so that

q =
nc

nc+Q
, Pr(K = k) =

Γ
(
n−p
2 + 1

)

k!Γ
(
n−p
2 − k + 1

)(1− q)kq
n−p
2 −k+1.
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If x = 0,

A(k, 0) = 1− I

(
nc+Q

n(c+ 4) +Q
,
1

2
,
p

2
+ k

)

and if x != 0 and p is even,

A(k, x) =

(
x

|x| + 1

)
exp

(
x− |x|

2

)
− e

x
2

√
π

p
2+k−1∑

i=0

1

i!

(
n|x|

√
nc+Q

√
n(c+ 4) +Q

)i− 1
2

×
[ √

nx√
nc+Q

Ki− 1
2

(
|x|
2

√
1 +

4n

nc+Q

)
+

√
n|x|√

n(c+ 4) +Q
Ki+ 1

2

(
|x|
2

√
1 +

4n

nc+Q

)]
,

meanwhile, if x != 0 and p is odd,

A(k, x) =
e

x
2

√
π




∞∑

i= p−1
2 +k

1

Γ(i+ 3
2)

(
n|x|

√
nc+Q

√
n(c+ 4) +Q

)i

×
{ √

nx√
nc+Q

Ki

(
|x|
2

√
1 +

4n

nc+Q

)
+

√
n|x|√

n(c+ 4) +Q
Ki+1

(
|x|
2

√
1 +

4n

nc+Q

)}
.

(b) Under the NIW prior, the exact CDF of U is given by replacing n with m = N1+N2+

m0, Q with md, and c with c̃ in Theorem 4.3 (a), where c̃ = (k1 +N1)−1 + (k2 +N2)−1

and d = (ω1 − ω2)′Λ−1(ω1 − ω2).

The exact CDF of U , denoted by F (x), generally involves some special functions
and the infinite sums. However, there are some cases where F (x) is represented only by
elementary functions and the finite sums. Tables 1 and 2 summarize when and how F (x)

is expressed. We observe from Table 1 that if both n and p are even or odd, the expression
of F (0) consists of elementary functions only, and has the finite sums. Table 2 shows that
if both n and p are even, then the expression of F (x) consists of elementary functions only
and has the finite sums for all x. These facts imply that we can quite easily and exactly
evaluate the estimate of the optimal error rate for the above cases. We state these cases as
Corollary 4.4 and 4.5.

Corollary 4.4. Assume the same conditions as Theorem 4.1. Under the Jeffreys prior, if
both n and p are even or odd, then

F (0) =
1

2

(
1 +

Q

nc

) (n−p)/2∑

k=0

Pr(K = k)

[
1− I

(
nc+Q

n(c+ 4) +Q
,
1

2
,
p

2
+ k

)]
, (50)

where I(1; 1/2;Z/2) = 1 for any positive integer Z, and

I

(
x;

1

2
;
Z

2

)
=






(2/π) sin−1(
√
x) Z = 1,

(2/π) sin−1(
√
x)

+(2/π)
√
x
∑(Z−1)/2

k=1
(2k−2)!!
(2k−1)!!(1− x)k−1/2 Z > 1 odd,

√
x
∑(Z−2)/2

k=0
(2k−1)!!
(2k)!! (1− x)k Z > 1 even
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Table 1: Classification of expressions for the exact CDF of U at x = 0.

p n

even odd
even finite sums and elementary functions infinite sums and elementary functions
odd infinite sums and elementary functions finite sums and elementary functions

Table 2: Classification of expressions for the exact CDF of U at x != 0

p n

even odd
even finite sums and elementary functions infinite sums and elementary functions
odd double infinite sums and special functions infinite sums and special functions

for any real number 0 ≤ x < 1.

Corollary 4.5. Assume the same conditions as Theorem 4.1. Under the Jeffreys prior, if
both n and p are even, then

F (x) =
1

2

(
1 +

Q

nc

) (n−p)/2∑

k=0

Pr(K = k)A(k, x), (51)

where

A(k, x) =

(
x

|x| + 1

)
exp

(
x− |x|

2

)
− ex/2√

π

p/2+k−1∑

i=0

1

i!

(
n|x|

√
nc+Q

√
n(c+ 4) +Q

)i−1/2

×
[ √

nx√
nc+Q

Ki−1/2

(
|x|
2

√
1 +

4n

nc+Q

)
+

√
n|x|√

n(c+ 4) +Q
Ki+1/2

(
|x|
2

√
1 +

4n

nc+Q

)]

with

Ki+1/2(x) =

√
π

2x
exp(−x)

i∑

k=0

(k + i)!

k!(i− k)!
(2x)−k,

K±1/2(x) =

√
π

2x
exp(−x).

If either n or p is not even, however, we need to evaluate the (double) infinite sums
and the modified Bessel function of the second kind. In this case, the infinite sums can be
truncated whenever convergence is observed and we may use mathematical software such
as R, which is able to evaluate the modified Bessel function of the second kind.
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4.3.2 Approximations for the Bayes estimator of the optimal error rate

In the previous section, we observed that the exact CDF of U generally involves special
functions and (double) infinite sums. To avoid the computation of these complicated
elements, we discuss the approximations for the Bayes estimator of ε1 under both the
priors.

This section suggests the approximations based on Edgeworth expansion. Concerning
Edgeworth expansions, Javed et al. (2021) discussed Edgeworth expansion of random sum
of independent and identically distributed random vectors.

Under the Jeffreys prior, Geisser (1986) proposed a normal approximation

E(ε1) ≈ Φ

(
x− (pc+Q)/2

[pc+ (1 + pc)Q]1/2

)
, (52)

where Q = (x̄1 − x̄2)′S−1(x̄1 − x̄2) and c = N−1
1 +N−1

2 . We refer to the approximation
given by (52) as the Geisser approximation. The Geisser approximation could be obtained
by approximating the variance ofU in Theorem 4.2 by pc+(1+pc)Q and then regarding the
distribution ofU as the normal distribution with the mean (pc+Q)/2 and the approximated
variance pc + (1 + pc)Q. However, the Geisser approximation appears somewhat rough,
because it is apparent from Theorem 4.2 that the distribution of U is skewed and heavy
tailed, and the approximated variance is obtained by deleting the terms pc2 and Q2/n

in V(U). This section suggests a more accurate approximation for the exact CDF of U .
Let d

= denote the equality in distribution. From the proof of Theorem 4.1, the stochastic
representation of U is given by

U
d
=

cv

2
+
√
cvu0, (53)

where v|z ∼ χ2
p(Qz/(nc)), z ∼ χ2

n, and u0 ∼ N(0, 1); u0 is independent of v and z.
Suppose X

d≈ Y means that the distribution of X is approximated by that of Y . At first,
we approximate the distribution of U based on the approximation for the distribution of
cv. Geisser (1967) equated the first two moments of cv to those of a constant R times a
χ2 random variable with f degrees of freedom resulting in

cv
d≈ RW (54)

where

R =
pc2 + 2Qc+Q2/n

cp+Q
, f =

(pc+Q)2

pc2 + 2Qc+Q2/n
, W ∼ χ2

f .

Applying approximation (54) to (53), we can get

U
d≈ U1 and U1

d
= W

R

2
+
√
WRu0, (55)
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where u0 ∼ N(0, 1) and W ∼ χ2
f , and they are independently distributed. The following

lemma is directly used to derive the Edgeworth expansion for U1.

Lemma 4.6. Suppose the stochastic representation of a random variable X is

X
d
= W δ +

√
WΩ1/2u0

whereu0 ∼ N(0, 1) andW ∼ χ2
f ; they are independently distributed. Then the Edgeworth

expansion for the distribution function of the standardized X/f is given by

P (Sf ≤ x) = Φ(x) + f−1/2p1(x)φ(x) + f−1p2(x)φ(x) + o(f−1),

where

Sf =
√
f
X/f − δ√
2δ2 + Ω

,

p1(x) = −1

6
κ̃3(x

2 − 1), p2(x) = −x

{
1

24
κ̃4(x

2 − 3) +
1

72
κ̃23(x

4 − 10x2 + 15)

}
,

κ̃3 =
2δ(3Ω+ 4δ2)

(2δ2 + Ω)3/2
, κ̃4 =

6(Ω2 + 8Ωδ2 + 8δ4)

(2δ2 + Ω)2
.

Using Lemma 4.6 with δ = R/2 and Ω = R, we can derive the Edgeworth expansion
for the distribution function of U1, whose stochastic representation is given by (55). We
refer to the Edgeworth expansion for U1 as the approximate-Edgeworth expansion for U .
We summarize the results in Theorem 4.7.

Theorem 4.7. Assume the same conditions as Theorem 4.1.
(a) Under the Jeffreys prior, the approximate-Edgeworth expansion for U is given by

Pr

(
U − E(U)√

V(U)
≤ x

)
≈ Pr

(
U1 − E(U)√

V(U)
≤ x

)

= Φ(x) + f−1/2p1(x)φ(x) + f−1p2(x)φ(x) + o(f−1), (56)

where

f =
(cp+Q)2

pc2 + 2Qc+Q/n
, R =

pc2 + 2Qc+Q2/n

cp+Q
,

κ̃3 =

√
R(R + 3)

(R/2 + 1)3/2
, κ̃4 =

6(1 + 2R +R2/2)

(R/2 + 1)2
.

(b)Under the NIW prior, the approximate-Edgeworth expansion forU is given by replacing
n with m = N1 + N2 + m0, Q with md, and c with c̃ in Theorem 4.7(a), where c̃ =

(k1 +N1)−1 + (k2 +N2)−1 and d = (ω1 − ω2)′Λ−1(ω1 − ω2).

We refer to the leading term Φ(x) in (56) as the leading term approximation, and
to the approximation including the second and third terms of (56) as the second order
approximation, which is denoted by F2(x). We suggest these approximations as the
approximations for the exact CDF of U .
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4.4 Numerical studies
In the foregoing section, we discussed the approximations for the exact CDF of U under
both the priors. In this section, we investigate the accuracy of the approximations for the
exact CDF ofU under the Jeffreys prior. The statistical software R is used to create all tables
and the seed value is set.seed(1). All simulations are made for µ1 = (∆, 0, · · · , 0)′,
µ2 = (0, · · · , 0)′ and Σ = Ip, where ∆2 is the squared Mahalanobis distance between
π1 and π2, and Ip denotes the p × p identity matrix. In addition, we choose the sample
sizes N1 and N2 and the dimension p, so that we can use the finite representation formula
(50) or (51) which enables use to compute the exact CDF of U exactly and quickly. Let
F2(x) be the second order approximation, Φ(x) be the leading term approximation, and
Φ(Rx) with R =

√
V(U)/[(c+ 1)Q+ cp] be the Geisser approximation. For various

pairs of (N1, N2) and several cut-off point x, we compare the relative errors of F2(x),
Φ(x), and the Φ(Rx) to the exact CDF of the standardized U denoted by F (x). The
simulation results are presented in Tables 3, 4, 5 and 6. We highlight in bold the lowest
absolute value of the relative errors in these tables. We observe from Table 3 that Φ(x)
shows better performance than F2(x) when both the squared Mahalanobis distance and
dimension are small. However, F2(x) shows considerable improvement over Φ(x) and
Φ(Rx) in most cases. Based on the relative errors of F2(x) to F(x), It seems that F2(x)

tends to underestimate F(x). The performance of Φ(Rx) is similar to that of Φ(x) for
small dimension, but for large dimension, the deviation of Φ(Rx) from Φ(x) is also found.

4.5 Empirical studies
In this section, we apply the results of Section 2 to estimate the optimal error rate for
Fisher’s iris data. The data involves the measurements in cm of the sepal length and width
and petal length and width of 50 plants for each of three types of iris; Iris setosa, Iris
versicolor, and Iris virginica. For the sake of illustration, we consider only two species:
versicolor and virginica. We assume the cut-off point is 0. We calculate the Bayes
estimate of the optimal error rate, the leading term approximation Φ(η), and the second
order approximation

F2(η) = Φ(η) + f−1/2p1(η)φ(η) + f−1p2(η)φ(η),

where η = [x− E(U)] /
√
V(U). The Geisser approximation given by (52) is omitted,

since as was pointed out in the previous section, the performance of the Geisser approx-
imation is similar to that of the normal approximation for small p. For comparison, we
consider the classical estimators of the optimal error rate: Φ(−Q/2) and Φ(−Q1/2),
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Table 3: Relative errors (%) of the second order approximation F2(x), leading term
approximation Φ(x), and Geisser approximation Φ(Rx) to the exact CDF F (x), for
∆2 = 0.5, 10, p = 2, 10, and cut-off point is 0.

∆2 N1 N2 p = 2 p = 10

F2(x) Φ(x) Φ(Rx) F2(x) Φ(x) Φ(Rx)

10 10 3.31 -0.82 1.41 1.77 10.5 69.1
20 10 1.88 5.82 9.88 1.06 9.51 67.6
20 20 1.16 -0.68 0.96 0.70 1.63 21.6
30 20 0.82 0.46 2.46 0.53 0.83 15.6

0.5 30 30 0.59 -0.33 1.00 0.39 0.66 14.1
40 30 0.46 0.07 1.47 0.31 2.00 23.2
40 40 0.36 -0.05 1.12 0.24 1.77 21.0
50 40 0.25 1.41 2.91 0.21 1.22 16.9
50 50 0.24 -0.21 0.68 0.18 0.43 10.7

10 10 -2.38 74.2 32.8 -46.3 288 727
20 10 -29.8 202 33.5 -32.8 221 682
20 20 -1.89 37.7 19.8 -3.90 54.5 215
30 20 -2.88 44.2 19.2 -2.43 40.3 173

10 30 30 -1.26 27.2 14.3 -1.06 24.8 116
40 30 -0.83 21.4 12.5 -1.85 34.4 141
40 40 -0.78 20.2 11.0 -1.69 33.4 130
50 40 -1.40 29.7 11.3 -1.22 27.4 111
50 50 -0.46 15.0 8.72 -0.52 16.0 75.5
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Table 4: Relative errors (%) of the second order approximation F2(x), leading term
approximation Φ(x), and Geisser approximation Φ(Rx) to the exact CDF F (x), for
∆2 = 0.5, 10, p = 2, 10, and cut-off point is 0.1.

∆2 N1 N2 p = 2 p = 10

F2(x) Φ(x) Φ(Rx) F2(x) Φ(x) Φ(Rx)

10 10 0.00 -6.34 -4.74 1.57 6.35 53.6
20 10 1.26 2.12 5.40 0.99 6.06 53.5
20 20 -0.09 -3.51 -2.32 0.49 -0.01 15.9
30 20 0.33 -1.47 0.09 0.34 -0.53 11.2

0.5 30 30 0.07 -2.06 -1.06 0.25 -0.49 10.1
40 30 0.16 -1.30 -0.22 0.24 0.82 18.2
40 40 0.11 -1.25 -0.36 0.19 0.73 16.5
50 40 0.18 0.39 1.62 0.16 0.32 13.1
50 50 0.05 -1.21 -0.54 0.11 -0.33 7.82

10 10 0.04 54.4 21.1 -25.0 210 522
20 10 -19.6 157 21.2 -21.8 172 520
20 20 -0.97 29.9 14.6 -2.47 44.3 176
30 20 -1.89 36.2 14.5 -1.59 33.1 144

10 30 30 -0.77 22.2 10.9 -0.64 20.3 97.5
40 30 -0.51 17.5 9.64 -1.33 28.9 120
40 40 -0.50 16.7 8.53 -1.27 28.3 111
50 40 -1.06 25.2 8.80 -0.91 23.2 95.7
50 50 -0.29 12.4 6.83 -0.35 13.4 65.2
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Table 5: Relative errors (%) of the second order approximation F2(x), leading term
approximation Φ(x), and Geisser approximation Φ(Rx) to the exact CDF F (x), for
∆2 = 0.5, 10, p = 2, 10, and cut-off point is 0.3.

∆2 N1 N2 p = 2 p = 10

F2(x) Φ(x) Φ(Rx) F2(x) Φ(x) Φ(Rx)

10 10 -2.34 -11.3 -10.6 0.92 0.09 30.4
20 10 0.21 -3.13 -1.05 0.63 0.77 31.9
20 20 -1.27 -6.74 -6.22 0.09 -2.44 7.06
30 20 -0.38 -4.11 -3.27 0.00 -2.51 4.13

0.5 30 30 -0.58 -4.33 -3.87 -0.02 -2.20 3.83
40 30 -0.27 -3.21 -2.66 0.09 -1.02 10.2
40 40 -0.25 -2.93 -2.49 0.07 -0.89 9.29
50 40 0.04 -1.18 -0.39 0.04 -1.07 6.96
50 50 -0.22 -2.61 -2.30 -0.02 -1.47 3.18

10 10 1.47 26.9 4.82 -5.04 113 280
20 10 -6.99 93.8 3.54 -8.36 105 309
20 20 0.02 17.7 6.39 -0.69 28 118
30 20 -0.61 23.2 6.92 -0.48 21.3 99.6

10 30 30 -0.16 14.0 5.39 -0.11 12.8 68.6
40 30 -0.09 11.0 4.98 -0.58 19.6 86.1
40 40 -0.13 10.8 4.45 -0.62 19.6 81.2
50 40 -0.52 17.5 4.57 -0.44 16.1 70.5
50 50 -0.07 7.80 3.66 -0.11 8.81 47.9
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Table 6: Relative errors (%) of the second order approximation F2(x), leading term
approximation Φ(x), and Geisser approximation Φ(Rx) to the exact CDF F (x), for
∆2 = 0.5, 10, p = 2, 10, and cut-off point is 0.5.

∆2 N1 N2 p = 2 p = 10

F2(x) Φ(x) Φ(Rx) F2(x) Φ(x) Φ(Rx)

10 10 -2.11 -12.0 -11.9 0.30 -3.80 14.8
20 10 -0.38 -5.98 -4.79 0.22 -2.67 16.9
20 20 -1.29 -7.68 -7.65 -0.16 -3.82 0.86
30 20 -0.62 -5.32 -5.03 -0.20 -3.61 -0.75

0.5 30 30 -0.71 -5.25 -5.19 -0.17 -3.15 -0.59
40 30 -0.43 -4.13 -3.98 -0.04 -2.19 4.19
40 40 -0.37 -3.74 -3.64 -0.03 -1.93 3.90
50 40 -0.07 -2.16 -1.73 -0.05 -1.94 2.40
50 50 -0.31 -3.28 -3.24 -0.09 -2.13 -0.16

10 10 1.15 10.3 -4.71 0.77 59.8 156
20 10 -1.83 54.7 -7.49 -2.35 62.3 189
20 20 0.32 8.89 0.67 0.09 16.3 78.7
30 20 -0.01 13.6 1.45 0.04 12.5 67.9

10 30 30 0.10 7.79 1.34 0.12 7.10 47.2
40 30 0.09 6.04 1.50 -0.15 12.4 61.5
40 40 0.04 6.20 1.38 -0.21 12.8 58.5
50 40 -0.19 11.5 1.35 -0.14 10.4 51.1
50 50 0.03 4.57 1.25 0.02 5.23 34.4
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Table 7: Comparison of the exact Bayes estimate for the optimal error rate, approximations
for the Bayes estimate and classical estimates for N1 = N2 = 50. These values are
calculated for several sets of variables; SL, SW, PL and PW (sepal length, sepal width,
petal length and petal width, respectively.

variables Exact Approximations Classical estimates
Bayes estimates Normal Edgeworth Φ(−Q/2) Φ(−Q1/2)

(SL, SW) 0.284 0.284 0.285 0.286 0.289
(PL, PW) 0.058 0.064 0.058 0.056 0.059
(SL, SW, PL, PW) 0.031 0.036 0.031 0.030 0.033

where Q = (x̄1− x̄2)′S−1(x̄1− x̄2)and Q1 = (n− p− 1)Q/n. These values are reported
in Table 7. As may be seen in Table 7, the Bayes estimate is parallel to the classical
estimates. If we employ the sepal length and width, and petal length and width as the
variables used for discrimination, then the estimate of the optimal error rate gives the
smallest value. On the other hand, the error rate associated with sepal length and width is
even higher than the error rate associated with the other variables. It could be concluded
that one may select all the variables as the discriminant variables in terms of the optimal
error rate.

4.6 Summary
Geisser (1967) pointed out that the estimation of the optimal error rate is useful as a guide
to the optimal discriminatory power of the variables used for allocation. However, previous
studies on misclassification rates in linear discriminant analysis have mainly focused on
the estimation of the actual error rate. In section 4, we derived the exact expressions for the
Bayes estimator of the optimal error rate in Theorem 4.3. In general, the expression of the
Bayes estimator of the optimal error rate involves special functions and the infinite sums.
However, the estimator can be represented only by the elementary functions and the finite
sums for specific combinations of dimension p and n = N1 +N2 − 2. We also suggested
the leading term and second order approximations for the estimate of the optimal error
rate. The suggested approximations were derived based on the approximate distribution
of U , the stochastic representation of which is given by (55). As shown in section 4.4, the
second order approximation showed considerable improvement over the leading term and
Geisser approximations in most cases. This deviation could be caused by the deletion of
the term pc2 in the exact variance of U , because pc2 may not be ignored when p is large.

It should be noted that if the value of f , which is defined in Theorem 4.7, is large,
then the estimate of the optimal error rate would be well approximated by the leading term
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approximation. It is easily found that the dimension p and sample squared Mahalanobis
distance Q monotonically increase the value of f , while c = N−1

1 + N−1
2 monotonically

decrease the value of f . These facts could indicate the good performance of the leading
term approximation for large p, ∆2 or sample sizes.

We have assumed the degrees of freedom of the posterior distribution of Σ−1 is
a natural number. However, by referring to Rao (1973) and others, we can apply the
discussion here not only to the natural degrees of freedom, but also to the real degrees of
freedom. We will leave this as a future issue.

Appendix
Initially, we give the proof for the joint posterior distribution for µ1, µ2, Σ−1 under the
NIW prior. It follows from (48) the joint density function of µ1, µ2, Σ−1 is given by

P (µ1,µ2,Σ
−1) ∝ |Σ−1|

m0−p+1
2 etr

[
−1

2
{Λ0 +

2∑

i=1

ki(µi − ξi)(µi − ξi)
′}Σ−1

]
,

Since x̄i ∼ Np(µi,Σ/Ni) and nS ∼ Wp(n,Σ), and t = (x̄1, x̄2,S) are sufficient for the
parameters of the population, the likelihood function is given by

L(t|µ1,µ2,Σ
−1) ∝ |Σ−1|

N1+N2
2 etr

[
−1

2
{nS+

2∑

i=1

Ni(x̄i − µi)(x̄i − µi)
′}Σ−1

]
.

The posterior distribution becomes

P (µ1,µ2,Σ
−1|t) ∝ |Σ−1|

N1+N2+m0−p+1
2 etr

[
−1

2
(Λ0 + nS)Σ−1

]

× etr

[
−1

2

{
2∑

i=1

ki(µi − ξi)(µi − ξi)
′ +Ni(x̄i − µi)(x̄i − µi)

′

}
Σ−1

]
. (57)

If we put Bi = ki(µi − ξi)(µi − ξi)′ +Ni(x̄i − µi)(x̄i − µi)′, then

Bi = ki(µi − x̄i + x̄i − ξi)(µi − x̄i + x̄i − ξi)
′ +Ni(x̄i − µi)(x̄i − µi)

′

= (ki +Ni)(µi − x̄i)(µi − x̄i)
′

+ ki[(µi − x̄i)(x̄i − ξi)
′ + (x̄i − ξi)(µi − x̄i)

′ + (x̄i − ξi)(x̄i − ξi)
′]

= (ki +Ni)(µi − x̄i)(µi − x̄i)
′ + ki[(µi − x̄i)(x̄i − ξi)

′ + (x̄i − ξi)(µi − x̄i)
′]

+
k2
i

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′ki +Ni

ki

= (ki +Ni)(µi − x̄i)(µi − x̄i)
′ + ki[(µi − x̄i)(x̄i − ξi)

′ + (x̄i − ξi)(µi − x̄i)
′]

+
k2
i

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′
(
1 +

Ni

ki

)
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= (ki +Ni)(µi − x̄i)(µi − x̄i)
′ + ki[(µi − x̄i)(x̄i − ξi)

′ + (x̄i − ξi)(µi − x̄i)
′]

+
k2
i

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′ +
kiNi

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′

= (ki +Ni)

[
(µi − x̄i)−

ki
ki +Ni

(ξi − x̄i)

] [
(µi − x̄i)−

ki
ki +Ni

(ξi − x̄i)

]′

+
kiNi

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′

= (ki +Ni)

[
µi −

{
ki

ki +Ni
ξi +

(
1− ki

ki +Ni

)
x̄i

}]

×
[
µi −

{
ki

ki +Ni
ξi +

(
1− ki

ki +Ni

)
x̄i

}]′
+

kiNi

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′

= (ki +Ni)(µi − ωi)(µi − ωi)
′ +

kiNi

ki +Ni
(x̄i − ξi)(x̄i − ξi)

′,

where we put

ωi =
ki

ki +Ni
ξi +

(
1− ki

ki +Ni

)
x̄i.

If we substitute Bi for (57), the desired result follows immediately.

Proof of Theorem 4.1. We only show the proof of Theorem 4.1 (a), because this proof can
be applied to the proof of Theorem 4.1 (b) in an obvious way. When a new observation
is from π1, the conditional distribution of U given µ1, µ2 and Σ is U |µ1,µ2,Σ,y ∈
π1 ∼ N(∆2/2,∆2) with ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2). Define v = ∆2/c with
c = N−1

1 +N−1
2 . Since

1√
c
Σ−1/2(µ1 − µ2)|Σ ∼ Np

(
1√
c
Σ−1/2(x̄1 − x̄2), Ip

)
,

the conditional distribution of v|Σ is the non-central χ2 distribution with non-centrality
parameter δ = (x̄1 − x̄2)′Σ−1(x̄1 − x̄2)/c. This is expressed as

v|Σ ∼ χ2
p

(
Q

nc
z

)
,

where

Q = (x̄1 − x̄2)
′S−1(x̄1 − x̄2), z =

(x̄1 − x̄2)′Σ−1(x̄1 − x̄2)

(x̄1 − x̄2)′(nS)−1(x̄1 − x̄2)
.

Since z is distributed as χ2
m from Theorem 3.2.8 of Muirhead (1982), the unconditional

distribution of U is given by

f(u|y ∈ π1) =

∫ ∞

0

∫ ∞

0

1√
cv
φ

(
u− cv/2√

cv

)
gp(v) exp

(
− Q

2nc
z

)
0F1

(
p

2
;
Q

4nc
vz

)

× gm(z)dvdz.

Using Lemma 1.3.3 of Muirhead (1982), the desired result follows immediately.
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Proof of Theorem 4.2. We derive the first four moments of U using the expression of
density given in Theorem 4.1. If we define

W (k) =

(
nc

nc+Q

)n/2 ∫ ∞

0

vp/2+k−1e−v/2

2p/2Γ(p/2)
1F1

(
n

2
;
p

2
;

Q

2(nc+Q)
v

)
dv, (58)

for a non-negative number k, then the first four moments of U can be represented by

E(U) =
c

2
W (1), (59)

E(U2) =
c2

4
W (2) + cW (1),

E(U3) =
c3

8
W (3) +

3c2

2
W (2),

E(U4) =
c4

16
W (4) +

3c3

2
W (3) + 3c2W (2).

Hence, the central moments of U are expressed as

V(U) =
c2

4
(W (2)−W (1)2) + cW (1), (60)

E(U − E(U))3 =
c3

8
W (3) +

3c2

2
W (2)− 3c3

8
W (2)W (1)

− 3c2

2
W (1)2 +

c3

4
W (1)3, (61)

E(U − E(U))4 =
c4

16
W (4) +

3c3

2
W (3) + 3c2W (2)

− c4

4
W (3)W (1)− 3c3W (2)W (1) +

3c4

8
W (2)W (1)2

+
3c3

2
W (1)3 − 3c4

16
W (1)4. (62)

Applying Lemma 1.3.3 of Muirhead (1982) to (58),

W (k) =

(
nc

nc+Q

)n/2 Γ(p/2 + k)

Γ(p/2)
2k2F1

(
n

2
,
p

2
+ k;

p

2
;

Q

nc+Q

)
. (63)

Using equality

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)

in (63),

W (k) =
Γ(p/2 + k)

Γ(p/2)
2k2F1

(
n

2
,−k;

p

2
;−Q

nc

)

=
Γ(p/2 + k)

Γ(p/2)
2k

k∑

r=0

(n/2)r(−k)r
(p/2)r

1

r!

(
−Q

nc

)r

. (64)
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If we put k =1, 2, 3 and 4 into (64), then

W (1) = p

(
1 +

Q

pc

)
,

W (2) = p(p+ 2)

[
1 +

2Q

pc
+

n(n+ 2)

p(p+ 2)

(
Q

nc

)2
]
,

W (3) = p(p+ 2)(p+ 4)

[
1 +

3Q

pc
+

3n(n+ 2)

p(p+ 2)

(
Q

nc

)2

+
n(n+ 2)(n+ 4)

p(p+ 2)(p+ 4)

(
Q

nc

)3
]
,

W (4) = p(p+ 2)(p+ 4)(p+ 6)

[
1 +

4Q

pc
+

6n(n+ 2)

p(p+ 2)

(
Q

nc

)2

+4
n(n+ 2)(n+ 4)

p(p+ 2)(p+ 4)

(
Q

nc

)3

+
n(n+ 2)(n+ 4)(n+ 6)

p(p+ 2)(p+ 4)(p+ 6)

(
Q

nc

)4
]
.

If we substitute these for (59), (60), (61) and (62), and then make arrangements of the
equations, mean, variance, skewness and kurtosis of U can be obtained.

Proof of Theorem 4.3. We only show the proof of Theorem 4.3 (a), because this proof
can be applied to the proof of Theorem 4.3 (b) in an obvious way. If we integrate the
posterior predictive density of U given in Theorem 4.1 (a) from −∞ to x, then

F (x) =

(
nc

nc+Q

)n/2 ∫ ∞

0

Φ

(
x− cv/2√

cv

)
gp(v)1F1

(
n

2
;
p

2
;

Q

2(nc+Q)
v

)
dv. (65)

If we apply an identity

1F1(a; b; x) = ex1F1 (b− a; b;−x)

to (65), then

F (x) =

(
nc

nc+Q

)n/2 ∫ ∞

0

Φ

(
x− cv/2√

cv

)
gp(v) exp

(
Q

2(nc+Q)
v

)

×
∞∑

k=0

(
p−n
2

)
k(

p
2

)
k

vk

k!

(
−Q

2(nc+Q)

)k

dv

=
∞∑

k=0

(
p−n
2

)
k

k!
(
p
2

)
k

(
−Q

2(nc+Q)

)k ( nc

nc+Q

)n/2

1

2
p
2Γ
(
p
2

)
∫ ∞

0

Φ

(
x− cv/2√

cv

)
v

p
2+k−1 exp

(
−1

2

(
1− Q

nc+Q

)
v

)
dv.

If we change the variable to nc(nc+Q)−1v = v∗, then

F (x) =
∞∑

k=0

(
p−n
2

)
k

k!
(
p
2

)
k

(
−Q

2(nc+Q)

)k ( nc

nc+Q

)n−p
2 −k
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1

2
p
2Γ
(
p
2

)
∫ ∞

0

Φ

(
x− (c+Q/n)v∗/2√

(c+Q/n)v∗

)
v∗

p
2+k−1 exp

(
−v∗

2

)
dv. (66)

If we apply equalities

(x)n =
Γ(x+ n)

Γ(x)
, (−x)n = (−1)n(x− n+ 1)n

to (66), then

F (x) =

(
nc

nc+Q

)−1 ∞∑

k=0

Γ
(
n−p
2 + 1

)

k!Γ
(
n−p
2 − k + 1

)
(
1− nc

nc+Q

)k ( nc

nc+Q

)n−p
2 −k+1

M(x),

with

M(x) =

∫ ∞

0

Φ

(
x− (c+Q/n)v/2√

(c+Q/n)v

)
gp+2k(v)dv,

where gp+2k(v) is the χ2 density of degrees of freedom p + 2k. To calculate F (x), we
need to compute M(x). First, if we put x = 0 and α = c+Q/n in M(x), then

M(0) =

∫ ∞

0

Φ

(
−
√
αv

2

)
gp+2k(v)dv

=
1√
2π

1

2
p
2+kΓ(p2 + k)

∫ ∞

0

∫ −
√
αv/2

−∞
v

p
2+k−1 exp

(
−z2

2
− v

2

)
dzdv

=
1√
2π

1

2
p
2+kΓ(p2 + k)

∫ ∞

0

∫ ∞

√
αv/2

v
p
2+k−1 exp

(
−z2

2
− v

2

)
dzdv.

If we make the change of variable y =
√
v, then

M(0) =

√
2

π

1

2
p
2+kΓ(p2 + k)

∫ ∞

0

∫ ∞

√
αy/2

yp+2k−1 exp

(
−z2

2
− y2

2

)
dzdy. (67)

The integral (67) can be evaluated by applying the proof of Lemma D.1 given by Dalton
and Dougherty (2011). Next, we consider the case x != 0. Let φ(·) be the standard normal
density and Gs(·) be the CDF of a χ2 variable with degrees of freedom s. If we apply the
integration by parts to M(x), then

M(x) =

[
Φ

(
x− αv/2√

αv

)
Gp+2k(v)

]∞

0

+
1

2

∫ ∞
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=
ex/2

2
√
2π

[
x√
α

∫ ∞

0

v−3/2 exp

(
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1

v
− α

8
v

)
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+

√
α

2

∫ ∞

0

v−1/2 exp

(
− x2

2α

1

v
− α

8
v

)
Gp+2k(v)dv

]
.

If we define

N(t) =

∫ ∞

0

v−t/2 exp

(
− x2

2α

1

v
− α

8
v

)
Gp+2k(v)dv, (68)

then,

M(x) =
ex/2

2
√
2π

[
x√
α
N(3) +

√
α

2
N(1)

]
. (69)

Equation (68) can be evaluated using the following expressions for Gp+2k(v) given in the
Appendix of Fatti (1983):

Gp+2k(v) =






1− exp
(
−v

2

) p/2+k−1∑
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1

i!

(v
2

)i
, p is even,

2Φ(
√
v)− 1− exp

(
−v

2

) (p−1)/2+k−1∑
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1

Γ(i+ 3/2)

(v
2

)i+1/2

p is odd.

When p is even, (68) becomes

N(t) = 2

(
2|x|
α
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(
|x|
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√
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√
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2

√
1 +

4

α

)
, (70)

where we applied the equality
∫ ∞

0

vs−1e−t1v−1−t2vdv = 2

(
t1
t2

)s/2

Ks

(
2
√
t1t2
)
, (71)

where t1 > 0 and t2 > 0. This equality is given by equation 9 of 3.471 in Gradshteyn and
Ryzhik (2007). If we put (70) into (69), then
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2
√
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(
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)
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√
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 . (72)

If we use the equality

K1/2(x) = K−1/2(x) =

√
π

2x
exp(−x)

in (72), then the desired result for even p and x != 0 can be obtained. When p is odd,
equation (68) becomes
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 dv. (73)

Since the error function is defined as

erf(z) =
2√
π

∫ z

0

e−t2dt,

we can express equation (73) as
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Using the equality

erf(z) =
2ze−z2

√
π

1F1

(
1;

3

2
; z2
)
,

equation (74) becomes
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The second term of (75) can be computed as
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by using the equality (71), while the first term of (75) as
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Since the integrand in (77) is the noncentral chi squared density with degrees of freedom
3 and noncentrality parameter 2w and Corollary 1.3.5 of Muirhead (1982), (77) becomes
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Putting (76) and (78) into (75),
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∞∑
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If we put (79) into (69), then we can obtain the result for odd p and x != 0.

Proof of Corollary 4.4 and 4.5. Since (n− p)/2 is an even number,
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)
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The rest of the proof is the same as that of Theorem 4.3 (a). In addition, the finite
representation forKi±1/2 is found in 8.468 and 8.469 of Gradshteyn and Ryzhik (2007).

Proof of Lemma 4.6. Since mean and variance of X/f are given by E(X/f) = δ and
V(X/f) = γ/f with γ = Ω + 2δ2, the conditional distribution of the standardized X/f

is given by

Sf ∼ N

(
−
√
fδ

√
γ

+
δ

g
√
fγ

(gW ), (gW )

)
,

where W ∼ χ2
f and g = Ω/(fγ). From Definition 2.1 of Barndorff-Nielsen et al. (1982),

the distribution of Sf is the normal variance-mean mixture with position −
√
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√
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δ/(g
√
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d
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f . Hence, from equation
(2.2) of Barndorff-Nielsen et al. (1982), the characteristic function of Sf is given by

ĝ(θ) = exp

(
− iθ

√
fδ

√
γ

)(
1− 2iθδ√

fγ
+
θ2Ω

fγ

)−f/2

.

The cumulant generating function of Sf becomes
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For l ≥ 2, the l th derivative of K(θ) is given by

K(l)(θ) = −1
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To compute the lth cumulant, we express (80) as

K(l)(θ) =
∑
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[
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If we put l = 3 in (81), then the first summation becomes
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Hence, the third cumulant of Sf is given by

2δ(3Ω+ 4δ2)

(2δ2 + Ω)3/2
1√
f
.

The fourth cumulant of Sf can be obtained by following the procedures to obtain the third
cumulant of Sf . The characteristic function of Sf is represented by

ĝ(θ) = exp

{
−1

2
θ2 +

1√
f

1

3!
κ̃3(iθ)

3 +
1

f

1

4!
κ̃4(iθ)

4 + · · ·
}
, (82)

where

κ̃3 =
2δ(3Ω+ 4δ2)

(2δ2 + Ω)3/2
and κ̃4 =

6(Ω2 + 8Ωδ2 + 8δ4)

(2δ2 + Ω)2
.

Since (82) is identical to (2.7) of Hall (1992), the Edgeworth expansion of Sf is followed
immediately.
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5 Conclusion and future problems
There are a lot of papers concerning the properties of a Wishart matrix and a normal
vector, respectively. However, these random objects does not always appear in isolation.
For instance, the Hotelling’s T 2 statistics are expressed as the combination of a Wishart
matrix and a normal vector in the form of quadratic forms, while linear discriminant
coefficients are expressed as the product of an inverse Wishart matrix and a normal vector
(cf. Siotani et al. 1985). Consequently, in this dissertation, we have investigated the
distribution of some functions of a Wishart matrix and a normal vector.

In section 2, we derive the stochastic representation of the product of a Wishart matrix
and a normal vector with different covariance matrices. The derivation is based on the
result of Bodnar et al. (2013). The obtained representation enables us to construct the
density function and to express the higher order moment of the product. As for the
moment, we provided the explicit expression of the first four moments of the product.
We can observe from the moment formulae that the distribution of the product is mainly
affected by degrees of freedom of a Wishart matrix n, and dimension k; if n or k is large,
this distribution could be approximated by a normal distribution well. In addition, the
large eigenvalues of the product of a different covariance matrices make the distribution
less skewed. Using the first four moments of the product, we provided a Edgeworth
type expansion given by Theorem 3.2.2 of Kollo and von Rosen (2005). Comparing
the Edgeworth type expansion with kernel density estimator of the product, the good
performance of the Edgeworth type expansions is documented for moderately large n.
Even though the Edgeworth type expansion with small n performed badly, the performance
of the Edgeworth type expansions is greatly improved for large dimension. Since the
error bound for the Edgeworth expansion derived in section 2 has not been evaluated,
the evaluation of the error bound will be an important issue in the future. In addition,
we proposed a Edgeworth type expansion for linear combinations of the product, and a
future work may be to provide Edgeworth type expansion for linear transformations of the
product. The product discussed in section 2 corresponds to a semi-conjugate prior for the
weights of the contact portfolio and the coefficients of the linear discriminant function
(cf. Hoff, 2009). Therefore, the discussion in this section can be applied to Bayesian
inference for the weights of tangency portfolios and coefficients of the linear discriminant
function.

In section 3, we consider the distribution of the product of a Wishart matrix and
a conditional normal vector given a Wishart matrix. This kind of product appears in
Bayesian statistics. Our stochastic representation of the product improved the existing
representations in terms of computational efficiency. We can observe from the stochastic
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representation of the product that the distribution of the product belongs to the fam-
ily of generalized hyperbolic distributions (cf. Barndorff-Nielsen, 1982; Blæsild, 1981;
Blæsild, 1982). which indicate that the distribution is closed under affine transformation,
marginalization, and conditioning. Some useful formulae—density function, first four
moments, Edgeworth expansion of the product—have been provided. In Appendix, we
have improved the computational efficiency of some stochastic representations given in
Bauder et al. (2019). As a future work, we would like to consider the product of the matrix
variate generalized inverse Gaussian distribution (MGIG), which includes the Wishart
matrix as a special case, and the multivariate normal distribution. For the properties of
MGIG distribution, readers may refer to Butler (1998), Seshadri (2003), Massam and
Wesołowski (2006), and Seshadri and Wesołowski (2008)

In section 4, we discuss the posterior predictive distribution of the linear discriminant
in a Bayesian setting. We derived the first four moments and the density function of
the population linear discriminant under the Jeffreys and normal inverse Wishart prior
distributions. We applied these results to Bayesian estimation of the optimal error rate,
which is associated with population linear discriminant. Although, the obtained estimator
is generally expressed by infinite series or some special functions, we can represent the
estimator only as a finite sum and an elementary function under certain conditions. In
addition, we suggested the Edgeworth type approximations for the estimator of the optimal
error rate, which is generally documented the better result than existing approximations
for the estimator of the optimal error rate. According to Geisser (1967, 1982), "The
estimation of ε = q1ε1 + q2ε2, the total optimal error rate, is useful as a guide to the
optimal discriminatory power of the variables used for allocation. If the estimate of ε
indicates that ε is larger than the accuracy required for the allocation procedure, one would
search for additional or another set of variables that would diminish the total error rate.
" Therefore, the obtained results in the section 4 are useful for the selection of variables
for linear discriminant analysis. Further, it seems that the obtained Bayes estimator
crucially depends on the choices of hyper-parameters of the prior distributions. Thus, it
is important to propose (theoretically supported) guidelines on some choices of hyper-
parameters for the prior distributions. This is left for future works. In addition to the
linear discriminant function in two multivariate normal populations treated in this paper,
there are other important discriminant procedures. There are, for example, quadratic
discriminant procedure that arise when the covariance matrices of two normal populations
are different, linear discriminant procedure in k multivariate normal discrimination, and
discriminant procedure obtained by the Between-Within Method (cf. Siotani et al. 1985).
Also, in the situation where the correlation between variables is extremely strong, the
covariance matrix will be close to be singular. In this case, we can also consider the linear
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discriminant procedure that arises when Σ−1 is replaced by the Moore-Penrose inverse
Σ+ (cf. Harville, 1997). A future task is to estimate the probabilities of misclassification
associated with these discriminant procedures under the Bayesian framework.
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